
Estimating the extent of the effects of data quality
through observations

Daniele Foroni
Huawei ERC

daniele.foroni@huawei.com

Matteo Lissandrini
Aalborg University
matteo@cs.aau.dk

Yannis Velegrakis
University of Trento and

Utrecht University
i.velegrakis@uu.nl

Abstract—Existing data quality works have so far focused
on the computation of many data characteristics as a mean of
quantifying different quality dimensions, like freshness, consis-
tency, accuracy, or completeness, that are all defined about some
ideal (clean) dataset. We claim that this approach falls short in
providing a full specification of the quality of the data since it
does not take into consideration the task for which the data is
to be used, neither any future instances of the dataset. We argue
that apart from the difference from the clean dataset, it is equally
important to know the degree to which such difference affects
the results of the task at hand. Thus, we extend the existing
data quality definition to include that degree. Our approach, not
only allows data quality to be considered in the context of the
intended task, but can also provide useful information even in the
absence of the clean dataset, and proffer an understanding of the
effect of data quality in future dataset instances. We describe a
system and its implementation that computes this extended form
of data quality through a principled approach of systematic noise
generation and task result evaluation. We perform numerous
experiments illustrating the effectiveness of the approach and
how this allows contextualizing traditional data quality measures.

I. INTRODUCTION

To have confidence in any data-driven decision making,
there should be trust in the data on which the decision is based.
Unfortunately, real-world datasets have many data quality
issues affecting the results of the analytic tasks applied to
them. Consequently, there is an increasing interest on the topic
of data quality [9], [13], [16], [18], [19]. Over the years,
different data quality dimensions, like accuracy, completeness,
consistency, currency, or duplication avoidance, have been
identified [7], [27]. The majority of the data quality works,
however, has concentrated on the quantification of data quality,
to provide an overall informative metric for each dataset [12],
[14]. The fundamental principle behind these works is that
the available dataset (referred to as the noisy or dirty dataset)
differs from the one that accurately models the reality (referred
to as the clean dataset). Quantifying data quality translates into
quantifying the difference between the noisy and the clean
dataset. Unfortunately, the clean dataset is normally not avail-
able. A practical solution often adopted is to consider specific
characteristics that are expected to hold in the clean dataset,
measure the violations of these properties, and consider this
as an approximation of the quality quantification [12], [14].

We claim that simply quantifying the difference between the
available and the clean dataset, as typically done in existing

data quality works, falls short in providing a sufficiently
informative indication of the quality of a dataset. One of the
reasons is that this approach does not take into consideration
the task for which the dataset is to be used. Recall that the
main reason we are interested in the quality of a dataset is to
know how much trust to put on the results of an analysis task
performed on it. Thus, it is not enough to know the difference
from the clean dataset, but also how much that difference
affects the results of the desired task. It may be the case that
the results of a task are highly affected by a small variation
from the clean dataset, while the results of another task remain
unchanged.

To cope with the above issues, we provide an extension of
data quality that takes into consideration the task at hand and
is more informative than existing approaches. In particular,
we advocate that a more informative metric is the one that
encompasses alongside the absolute number indicating the
variation from the clean dataset, a factor that indicates the
degree in which the results of a specific task are affected by
that variation. That factor is bound both to the nature of the
dataset and to the specific task. This novel concept of data
quality has multiple advantages. First, it allows different data
quality values to be specified for the same dataset, but for
different tasks. Second, it indicates the degree of error that
the results of the task will have on the current dataset, and
also on other instances of it. Last, but not least, the factor
alone can be used as a data quality indicator that allows to
make estimations for unforeseen dataset variations.

We have developed a system that provides a principled
materialization of this idea. Given a task of interest, it modifies
in a systematic way the available (noisy) dataset by introducing
in it various forms of noise, and while it does so, it observes
and measures the variation in the results of the specific task of
interest applied on the noisy dataset. The many observations
are then combined to compute the variation effect factor. To
measure the variation in the results of a task, properties specific
to the task are used. For instance, if the task is clustering, the
Fowlkes-Mallows score [17] may be used to evaluate the effect
on the clustering result. In general, any metric can be used.

Empowered by this new type of data quality characteriza-
tion, analysts may reason about the reliability and robustness
of their insights, prioritize cleaning tasks, or even decide to
avoid some of them altogether [1]. Consider, for instance, an
analyst planning to perform some clustering task on a dataset.

37th IEEE Intl. Conference on Data Engineering (ICDE 2021)



The analyst would like to know if it is worth the effort to
employ some data cleaning operations, and on what part of
the data, or instead, accept the results of the clustering even if
they were generated on dirty data. By testing different types
of noise, at different parts of the data, the system identifies the
effect that the noise has on the results of the clustering. For
those that have a significant impact, the analyst can employ the
respective cleaning tools to ensure that the obtained results do
not differ much from the reality. Moreover, even if they decide
not to perform any cleaning, they can monitor the data and, if
some kind of noise in the data increases, take action.

The approach taken by our system is in line with other data
cleaning systems. Bart [5], for instance, generates different
kinds of noise to measure the effectiveness of data cleaning
tools. Similarly, ActiveClean [19] by focusing on parts of
the data allows for iterative cleaning in statistical modeling
problems. While those works mainly focus on cleaning the
data, ours gives to the analyst the understanding of the effects
of the data quality issues. The analyst can use this knowledge
to decide what to clean and when.

More specifically, in this work we make the following
contributions: (i) we extend the notion of data quality in a
way that takes into consideration the task for which the data
is about to be used (Section II). Although it has already been
recognized that data quality should be task specific, we are
the first to put the task into the data quality evaluation frame-
work formally; (ii) We design a procedure for the systematic
computation of the aforementioned task-dependent quality
function (Section III); (iii) We materialize the procedure into
a fully automated framework that implements different kinds
of metrics for different tasks and produces the respective data
quality evaluations (Sections IV and VI). (iv) We show how
to run our framework for a set of well-known tasks, and we
use it to justify for various task evaluation decisions taken
elsewhere (Section V); (v) Finally, we perform a number of
experiments to evaluate the efficiency of our framework and
the effectiveness of our approach (Section VII).

II. DATA QUALITY REVISITED

A dataset is a set of structures modeling some real-world
situation. Let D denote the set of all possible datasets.

A data management task, like a query or some data analyt-
ics, is a procedure that takes as input a dataset and outputs a
set of data structures, i.e., another dataset.

Definition 1: A task is a function T :D→D. The set of all
possible tasks is denoted as T .

When a dataset is not accurately modeling the reality, it
is said to have data quality issues. To distinguish between a
dataset that perfectly models the reality and one that does not,
we refer to the first as the clean and to the second as the
erroneous or dirty.

A distance function is a function d:D×D→[0,∞) used to
quantify the difference between two datasets.

The contextual quality of the dataset D for a task T is a
score that depends on the distance between the results of the

𝑑 𝐷, 𝐷$

𝐷𝑐(𝐷)

𝑐(𝐷$) 𝐷$ 𝑇(𝐷$)	

𝑇(𝐷)𝑇

𝑇

𝑑 𝑇(𝐷),𝑇(𝐷$)𝑑 𝑐 𝐷 ,𝑐 𝐷$ = ⋯ = 𝑐 𝐷

𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑇 𝐷 = 𝑠𝑐𝑜𝑟𝑒(𝑐 𝐷 ∗ 𝑓9,$) = 𝑠𝑐𝑜𝑟𝑒(𝑐 𝐷 ∗ 𝑓9,$) ≈ 𝑠𝑐𝑜𝑟𝑒(𝑑 𝑇(𝐷), 𝑇(𝐷$) )

Fig. 1: The Contextual Data Quality Problem Explained

task when applied on the dataset D, and the results of the
same task when applied on the clean dataset Dc , i.e.,

QualityT (D) = score(d(T(D),T(Dc)) (1)

where T(D) (respectively T(Dc)) denotes the results of the
application of the task T on the dataset D (respectively Dc).

A natural assumption often made is that the higher is the
distance of a dataset D from the clean dataset Dc , the higher
will be the distance of the respective results of a task T on
these two datasets, which means that there is a correlation
d(T(D),T(Dc)) ∝ d(D,Dc). Existing works [10] have adopted
this assumption, which has allowed them to quantify data
quality by using simply the distance between the clean and
the erroneous dataset, i.e., considering the dataset quality as

QualityT (D) = score(d(D,Dc)) (2)

Nonetheless, usually the clean dataset Dc is not available,
so practical solutions have resorted to compute a proxy
of the distance through measuring some data characteris-
tics, the value of which is known for the clean dataset.
A data characteristic is a function c:D→R. For instance,
knowing that the clean dataset has no missing (i.e., null)
values, so the number of missing values in the erroneous
dataset is an indication of the distance from the clean one.
Denoting the counting function of the missing values as
cmiss , the accuracy of a dataset with respect to a task T
would be: QualityT (D) = score(d(D,Dc)) = score(cmiss(D)−
cmiss(Dc)) = score(cmiss(D) − 0) = score(cmiss(D)). Various
data characteristics (or combinations of them) can be used
to assess different data quality dimensions based on similar
assumptions. For instance, a similar approach can be applied
to the number of misspellings compared to a fixed vocabulary,
or the number of duplicates for an attribute that is supposed
to contain unique values.

The limitation of the traditional approach to data quality,
which is the one just described, is that it ignores the degree
of proportionality between d(D,Dc) and the actual value for
d(T(D),T(Dc)), which differs from task to task. To cope
with this limitation, the definition of data quality needs to
be extended to include it.

Definition 2: The quality of a dataset D for a task T , is
score(c(D) ∗ fT,c)

where score:R→R is a scoring function, c is a data charac-
teristic, and fT,c∈[0, 1] is a sensitivity factor of the task T to c.



Original
Dataset

D

Noise	c1
Generator

Noise	c2
Generator

Noise	ck
Generator

Noisy
Dataset
D+NCk

Task	
Result

T(D+NC2)

Task	
Result

T(D+NCk)

NC1
ΔR1

Task	
Result
T(D)

Task	
Result

T(D+NC1)

…
.

NC2

Noisy
Dataset
D+NC1

Noisy
Dataset
D+NC2

NCk

ΔR2

ΔRk…
.

…
.

D
is

ta
nc

e 
C

al
cu

la
to

r
D

is
ta

nc
e 

C
al

cu
la

to
r

D
is

ta
nc

e 
C

al
cu

la
to

r

Ta
sk
	T

Q
ua

lit
y 

Fa
ct

or
 C

al
cu

la
to

r

…
.

NC1

<Ca, fa>
<Cb, fb>

<Cm, fm>

C1

NC2

C2

NCk

Ck

…

Fig. 2: The architecture of the Contextual Data Quality Eval-
uation Framework

This characterization of data quality is more informative
since it offers a better understanding of the effect of the varia-
tion in the data on the task. Under this definition, an effective
assessment of the quality of a dataset for a specific task T
requires both the identification of the data characteristics c∈C
that are creating large differentiation in the task results and
the corresponding computation of the sensitivity factor fT,c
for them. Figure 1 illustrates the theoretical framework for the
contextual data quality problem. The challenging task in this
process is the derivation of that factor.

III. A DATA QUALITY FRAMEWORK

To evaluate the quality of a dataset D for a task T , we
need to decide what characteristics are worth looking at and
how much each affects the task results. To do this, we have
developed a framework that tests in a systematic way the effect
that a change in the dataset has on the results of the task.
Although changes in the dataset can be of any type, we focus
on those affecting some specific data characteristic c. We refer
to the changes as noise and the characteristic c that they are
affecting as the type of the noise. For every test performed,
the system builds a scenario: a triple 〈c, Nc, ∆R〉, where c is
a characteristic, Nc is some amount of noise of type c, and
∆R=d(T(D), T(D+Nc)) is the change in the results of T when
applied to D with and without the noise Nc .

Figure 2 depicts the process performed by the framework
and the web site1 provides a video demonstration on the way
it works. Given a dataset, the system produces a series of
scenarios by generating some noisy instances with different
amounts of noise of the chosen types, and measuring for each
noisy instance created the variation in the results of the task
from those produced by the given dataset. The framework
groups together the generated scenarios by characteristic (i.e.,
for every noise type) and quantifies the impact on the results
of each noise type. The computed degree constitutes the task
sensitivity factor fT,c for that specific type of noise c.

The framework takes as input a dataset D, a task T to apply,
a set of noise types c and the amounts P to introduce in

1https://db.disi.unitn.eu/projects/f4u.html

the dataset, a threshold ε , and k that represents the repeti-
tions of the process. Since the noise generation can be non-
deterministic, running the computation k times enables a more
accurate analysis.

First, we apply the task T on the dataset available at hand
D, and the result will be used along all the process. Our
experiments identified 4 types of behaviors (see Section VII)
that represent how the results change with respect to those
measured with D while increasing the amount of noise intro-
duced in the dataset: constant, linear, parabolic, and irregular.
A negligible impact on the distance (measured by ε) character-
izes the elements in the first group where no effect is observed
in the results regardless of the percentage of noise introduced.
A linear relation is observed when, while increasing the
percentage of noise introduced, the resulting distance increases
too linearly. The parabolic behavior indicates that the distance
measured increases with the percentage of noise introduced
up to some value, and then it starts decreasing. Finally, the
irregular behavior is observed with a fluctuating distance. In
Section VI, we expand on how to relate the characteristics of
these behaviors to the contextual data quality problem.

Since the framework is aware of the possible behaviors,
we can reduce the number of noisy instances of the original
dataset to generate for each amount in P when the effect
is either constant or parabolic. In particular, the system first
generates the noisy instances with the minimum and the
maximum noise percentage of P and runs the given task over
them. Then, the framework measures the distance of their
results from those of the original dataset (Section V). If their
distance is lower than the given threshold ε , it suggests that
the relationship is either constant or parabolic. To discriminate
the two, it proceeds by building a scenario for the noise
percentages in the middle of the range in P. On the other hand,
if the distance is higher than ε , we need to consider all the
amounts in P and measure their impacts on the results. Then,
we calculate the sensitivity factor for the current run with the
computed amounts in P. Once we repeated the process k times,
we compute the average of the sensitivity factors, which can
be implemented in multiple ways (Section VI). Finally, for
each noise, we return the sensitivity factors computed.

In what follows, we examine each part of this process, the
challenges, and the implementations.

IV. NOISE GENERATORS

The noise to produce the different scenarios is generated
through the noise generators. Each noise generator imple-
ments a function n:D→D that introduces in the dataset a
certain amount of a specific noise type Nc. The idea of
noise generators is the result of an extensive study of the
related literature of benchmark generators, e.g., TPC-H, entity
matchers and modifiers, and matching benchmarks [4], as well
as many practical scenarios. Following an approach similar
to BART [5], a noise generator introduces some noise into
the dataset using a given value distribution, e.g., normal
and uniform distribution, to allow also biased errors. This
nature enables a highly customizable generation of scenarios,



handling, for example, the case of an email field that has typos
with equal probability in each value and the case of elder
people that are more likely to have the birth date missing
than young people. Furthermore, we allow the user to specify
portions of the dataset in which noise cannot be introduced but,
with respect to BART, this noise generator does not handle the
conditional application of noise.

The system supports the use of any custom noise generator,
but contains already implemented a set of generators for 14
common noise types. These include, among others, the gen-
eration of nulls, missing values, spelling mistakes, permuted
words, abbreviations, synonyms, terms in different languages,
numerical variations, scale modifications and arithmetic nega-
tions. It also contains a component that can combine the noises
produced by these generators to create noises of more complex
types.

V. MEASURING TASK RESULT VARIATIONS

After having introduced some amounts of a specific noise
type in the dataset, the next challenge is to quantify the effect
that the noise has on the results of the task, by measuring
the difference ∆R between the task results obtained with the
original dataset and those obtained with the noisy instance.
Different types of metrics can be used for this purpose.

Task-specific Metrics. For many data analytic tasks, there are
well-established metrics for quantifying their effectiveness. As
an indication, the Fowlkes-Mallows score [17], the Silhouette
coefficient, or the Rand Index [25] can be used for clustering,
the F1 score, the accuracy, the precision or recall for classifi-
cation, and the Mean Squared Log Error, or the R2 score for
regression. In these cases, the difference of their scores before
and after the introduction of some noise in a dataset gives an
indication of the impact of the noise on the task results.

Data Characteristic Metrics. Another approach for quanti-
fying the effect of some noise is to measure the variation of
some data characteristics in the results of the analytic task,
like nulls, entropy, and value cardinality.

VI. SENSITIVITY FACTOR COMPUTATION

The last step in the data quality evaluation process is the
computation of a score that indicates the relation between the
noise and its impact on the analytic results, i.e., the sensitivity
factor (Definition 2).

We assume as input a series of scenarios, i.e., items of the
form 〈c, Nc, ∆R〉, related to a single noise type c. Then, we
compute a sensitivity factor for the noise c by considering the
set of 〈Nc, ∆R〉 pairs.

We employ 3 different methods to compute the sensitivity
factor between the amount of noise introduced in the data
and the effect on the task results. The first is the linear
regression [20], which identifies a linear relation between the
two variables. The second method we employ is the polyno-
mial regression, capturing when the relation is polynomial.
In both cases, we obtain a pair, containing the score (i.e., the
coefficient of determination, R2) and the regression coefficient

(β) of the relation. The score represents the goodness of the
fit of the model and ranges between 0 (bad fit) and 1 (perfect
fit). The third method is the Spearman correlation [24] that
assesses monotonic relationships, even if they are not linear. It
indicates how much the two variables are correlated, and how
much they have a common increasing or decreasing monotonic
trend. It ranges between -1, meaning negative correlation of
the variables, and 1, positive correlation, with 0 meaning no
correlation. As described in Section III, we classify these
values in 4 sensitivity factor classes: linear, parabolic, constant,
and irregular. A high linear regression score and a Spearman
correlation close to 1 or -1 characterize the linear group. The
parabolic behavior presents a high polynomial regression score
(with a lower linear score, otherwise every linear would be
categorized as polynomial). A very low standard deviation
in the distances and a high Spearman value (close to 1 or
-1) distinguish the constant class. Finally, the irregular pattern
shows a low linear and polynomial score and a high standard
deviation value.

VII. EXPERIMENTS

In this section, we study the different aspects of our
framework, and we demonstrate how it can help analysts to
understand the extent to which a particular data quality issue
affects the results of a given analytical task. We showcase that
the impact of a data quality issue on the results of a task
depends on several factors: the type of the noise, its amount,
and, most importantly, the task.

In what follows, we demonstrate: (i) how to use our
framework to put data quality in context; (ii) the ability of the
framework to help the analysts to identify which data quality
issues affect more the results of the analytical task at hand;
(iii) the scalability of our system.

System Description. We performed a number of experiments
to study the different aspects or our system that is implemented
in Python and Spark. As analytic tasks, we considered cluster-
ing (k-means), classification (Random Forest), and regression
(Linear Least Square), well studied tasks with some estab-
lished evaluation metrics for comparing and understanding the
quality of the output. We used the AIRLINES dataset [22].
We run on it 10 noise generators with 10 different percentages
(5, 10, 20, . . . , 90%), in a 5-fold fashion and report the average.

Using the system. To understand how the system is used by
the analysts and the benefits it brings, consider a classification
task over the AIRLINES dataset. First the system introduces
noise of the different types into all the attributes to obtain a set
of different noisy instances of the dataset. Then, the Random
Forest Classifier is used first over the original dataset, then
over the generated noisy instances. The distance between the
results is obtained by comparing their F1 scores. Figure 3
(first row, second column) reports the results produced by the
system. The closer the F1 on a noisy instance is to the F1 on
the original dataset, the lower is the effect of that particular
noise on the task, and vice-versa. The plot shows that every
type of noise affects the results (as expected). Yet, MISSING



INFO and NULL errors have the largest impact on the results.
On the other hand, SHUFFLING and ACRONYM do not affect
the results significantly since their F1 scores are very similar
to the original dataset. As a consequence, one can understand
that the time spent by an analyst to clean or repair these latter
errors would not bring any significant benefit to the results.

Analysis of complex tasks. We tested the framework with
complex data mining tasks that involve both unsupervised
(i.e., clustering) and supervised learning (i.e., classification and
regression). Figure 3 presents the distances from the results
in the original datasets, for all the configurations tested. The
distance measure we used are: for clustering the Fowlkes-
Mallows (FM) score [17]; for classification the F1 score;
and for regression the Mean Squared Log Error (MSLE).
For the first two measures 1 means best quality and 0 worst
quality, whereas for the last measure 0 reflects a perfect result,
while the higher is the value, the lower is the precision of
the prediction. The ground-truth classes/clusters are 4 for the
AIRLINES dataset.

The effect of noise on different tasks. For the AIRLINES
dataset, our framework was able to detect that the same type
of noise affects the quality of the results of each task in a
highly different way. If we look at the effects of SCALE on
the three tasks, we can see that these errors are the most
significant for clustering (a decrease of around 70% with
60% of noise), while for classification and regressions, NULL,
EDIT, and NEGATION impact the most: NULL and EDIT for
classification with 0.36 of F1 with 80% of noise and an MSLE
of 1.7 with 50% for NULL and NEGATION in the latter.

If, furthermore, we compare the effects of MISSING tuples
on classification and regression, we can see that the latter
suffers less than the former (only in classification this type
of noise causes the lowest quality). On the other hand,
NEGATION errors affect regression much more than classi-
fication, producing some of the worst MSLE increases – up to
1.7 –, while causing only a mild decrease of F1 score – down
to 0.3 – respectively, both at 50% of noise introduced.

Therefore, from this analysis, we can see that we must
consider not only the data quality issues of the dataset but
also the task we want to perform, because what we inferred
from one specific task or issue does not always generalize to
other tasks or noises. Our framework can effectively support
the analyst in conducting this kind of reasoning.

Sensitivity Factor. Above we showed that the quality of the
results of a task depends on the type of noise in the dataset, its
amount, and the task. To quantify the effect of the noise more
precisely, our framework computes a set of sensitivity factors
for each task, dataset, and noise type, correlating the amount
of noise to the results of that task on that dataset. Figure 4
reports all the factors computed.

For example, the polynomial slope generated by the
NEGATION generator in clustering for the AIRLINES dataset
is very high (-1.92), which means that if the dataset contains
even a small amount of negations, cleaning those errors

immediately affects the results positively. Similarly, MISSING
INFO for classification has a linear coefficient (i.e., 0.99) with
an extremely high slope (-0.97), which means that repairing
just a few tuples can immediately lead to an improvement in
the results. On the other hand, ACRONYM for classification is
categorized as constant, meaning that cleaning and repairing
such errors would not immediately improve the results of the
task. We demonstrated that by taking advantage of the sensi-
tivity factors in Figure 4 and the results shown in Figure 3,
the data analyst can plan a cleaning process of the dataset
at hand. This allows an improvement in the quality of the
results of the task the analyst wants to perform (effectiveness),
and involves only the types of noises that significantly affect
the task (efficiency). This approach, on the one hand, saves
money and time for companies, while on the other hand, gives
valuable insights into the data.

VIII. RELATED WORK

Many works have stated the importance of data quality in
the modern data ecosystem [6], [11], [23]. One direction in
data quality is to quantify the quality of the data by measuring
different parameters like freshness [16], completeness [15],
and accuracy [14]. Many of these techniques have been
implemented in the Metanome framework [21]. These methods
fall short in providing full information about the quality of the
data since they only indicate the values of the specific quality
dimensions. Furthermore, they do not take into consideration
the task applied to the data, and assume that the clean dataset
(or the properties that hold in it) is always known.

Other works considered as data quality indicators the
constraint violations, where the challenge is their efficient
discovery. Those focus on functional [3] and inclusion [8]
dependencies, with or without conditions [2]. Unfortunately,
not all the errors that may appear in the datasets violate
constraints and constraints do not always cover all the data.

A generic approach in dealing with datasets with low quality
is to eliminate the errors. This is known as data cleaning [1].
KATARA [13] is one of the tools that aim at improving
the accuracy of a dataset, through the use of a knowledge
base. SampleClean [26] is another tool that given a sample
of the dataset, learns how to clean the data techniques over
the chosen sample and then applies the discovered rules on
aggregate query answers. Using an incremental approach,
ActiveClean [19] repairs the dataset prioritizing those records
that are likely to affect the results. Crowdsourcing may also
be used in data cleaning [9] since it efficiently improves the
quality of the dataset adding the human knowledge in the loop.

Last, but not least, it may still be possible to get consis-
tent answers to queries over dirty datasets [10], but these
approaches are often restricted to specific query types.

IX. CONCLUSION

We have extended the notion of data quality to consider the
analytic task for which the data is intended. Instead of giving
an exact quantification, we provide a factor that indicates the
effect of the data quality, and not the data quality itself. It does



0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.4

0.6

0.8

1.0

FM
Clustering - AIRLINES - FM

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.2

0.4

0.6

0.8

1.0

F1

Classification - AIRLINES - F1

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

1.0

1.2

1.4

1.6

M
S

LE

Regression - AIRLINES - MSLE

Fig. 3: Task specific distance using FM score for clustering (the higher the better), F1 score for classification (the higher is
better), and MSLE for regression (the lower the better)

Task Distance Clustering Classification Regression

Noise Linear Polynomial ρ Class Linear Polynomial ρ Class Linear Polynomial ρ Class

ABBREVIATION

A
IR

L
IN

E
S

(0.72, -0.49) (0.86, -1.26) −0.85* P (0.46, -0.31) (0.89, -1.39) −0.74* P (0.80, 0.48) (0.96, 1.25) 0.99* L
ACRONYM (1.00, 0.00) (1.00, 0.00) 0.00 C (0.01, -0.00) (0.28, -0.04) −0.10 C (0.00, -0.00) (0.00, 0.00) 0.00 C
BASE CHANGE (0.25, -0.22) (0.41, -0.84) −0.96* C (0.02, -0.05) (0.99, -1.40) −0.15 P (0.57, 0.37) (0.78, 1.17) 0.98* P
EDIT (0.22, -0.20) (0.39, -0.83) −0.97* C (0.89, -0.71) (0.99, -1.53) −0.98* L (0.17, 0.25) (0.36, 1.20) −0.29 I
MISSING INFO – – – – (0.99, -0.97) (1.00, -0.57) −1.00* L (0.94, 0.60) (0.95, 0.77) 0.98* L
NEGATION (0.00, -0.03) (0.91, -1.92) −0.16 P (0.02, -0.05) (0.97, -1.20) −0.10 P (0.00, 0.05) (0.77, 2.48) 0.23 P
NULL (0.54, -0.39) (0.94, -1.57) −0.70* P (0.96, -0.81) (0.98, -1.29) −1.00* L (0.26, 0.30) (0.46, 1.25) 0.97* C
PERMUTATION (0.66, -0.47) (0.79, -1.24) −1.00* P (0.93, -0.58) (0.99, -1.14) −1.00* L (0.21, 0.24) (0.40, 1.03) 0.77* I
SCALE (0.33, -0.32) (0.73, -1.58) −0.61* P (0.60, -0.46) (0.99, -1.79) −0.67* P (0.13, 0.19) (0.37, 1.11) −0.22 I
SHUFFLING (1.00, 0.00) (1.00, 0.00) 0.00 C (0.00, 0.00) (0.00, -0.00) −0.04 C (0.00, -0.00) (0.00, 0.00) 0.00 C

Fig. 4: The Sensitivity Factor table reports the tuple (score, slope) for the Linear and Polynomial relations, the Spearman
correlation (ρ), and the Class that each noise follows (L=linear, P=polynomial, C=constant, and I=irregular).

so by systematically introducing different forms and sizes of
noise, and measuring the variation caused by such noise on the
results of the analytic task. We have analyzed all the different
aspects of the system and have illustrated the sensitivity
faction, an additional information the framework offers in
guiding, among others, expensive data cleaning operations.

REFERENCES

[1] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani,
P. Papotti, M. Stonebraker, and N. Tang. Detecting data errors: Where
are we and what needs to be done? PVLDB, 2016.

[2] Z. Abedjan, L. Golab, and F. Naumann. Profiling relational data: a
survey. VLDB J., 24(4):557–581, 2015.

[3] Z. Abedjan, P. Schulze, and F. Naumann. DFD: efficient functional
dependency discovery. In CIKM, 2014.

[4] B. Alexe, W. C. Tan, and Y. Velegrakis. STBenchmark: towards a
benchmark for mapping systems. PVLDB, 1(1), 2008.

[5] P. C. Arocena, B. Glavic, G. Mecca, R. J. Miller, P. Papotti, and
D. Santoro. Messing up with BART: error generation for evaluating
data-cleaning algorithms. VLDB, 9(2), 2015.

[6] C. Batini, A. Rula, M. Scannapieco, and G. Viscusi. From data quality
to big data quality. JDM, 26(1), 2015.

[7] C. Batini and M. Scannapieco. Data Quality: Concepts, Methodologies
and Techniques. Springer, 2006.

[8] J. Bauckmann, Z. Abedjan, U. Leser, H. Müller, and F. Naumann.
Discovering conditional inclusion dependencies. In CIKM, 2012.

[9] M. Bergman, T. Milo, S. Novgorodov, and W. C. Tan. Query-oriented
data cleaning with oracles. In SIGMOD, 2015.

[10] L. Bertossi and J. Chomicki. Query answering in inconsistent databases.
In Logics for emerging applications of databases. 2004.

[11] L. Cai and Y. Zhu. The challenges of data quality and data quality
assessment in the big data era. DSJ, 14, 2015.

[12] F. Chiang and R. J. Miller. Discovering data quality rules. PVLDB,
1(1), 2008.

[13] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and
Y. Ye. KATARA: A data cleaning system powered by knowledge bases
and crowdsourcing. In SIGMOD, 2015.

[14] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving data quality:
Consistency and accuracy. In PVLDB, 2007.

[15] W. Fan and F. Geerts. Capturing missing tuples and missing values. In
PODS, 2010.

[16] W. Fan, F. Geerts, and J. Wijsen. Determining the currency of data. In
PODS, 2011.

[17] E. B. Fowlkes and C. L. Mallows. A method for comparing two
hierarchical clusterings. JASA, 78(383):553, 569, 1983.

[18] I. F. Ilyas, X. Chu, et al. Trends in cleaning relational data: Consistency
and deduplication. Foundations and Trends R© in Databases, 5(4), 2015.

[19] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and K. Goldberg.
Activeclean: interactive data cleaning for statistical modeling. PVLDB,
9(12), 2016.

[20] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied
linear statistical models, volume 4. Irwin Chicago, 1996.

[21] T. Papenbrock, T. Bergmann, M. Finke, J. Zwiener, and F. Naumann.
Data Profiling with Metanome. PVLDB, 8(12), 2015.

[22] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim.
Data synthesis based on generative adversarial networks. PVLDB,
11(10):1071–1083, 2018.

[23] B. Saha and D. Srivastava. Data quality: The other face of big data. In
ICDE, 2014.

[24] C. Spearman. The proof and measurement of association between two
things. AJP, 15(1), 1904.

[25] N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correc-
tion for chance. JMLR, 11(Oct), 2010.

[26] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and
T. Milo. A sample-and-clean framework for fast and accurate query
processing on dirty data. In SIGMOD, 2014.

[27] R. Y. Wang and D. M. Strong. Beyond accuracy: What data quality
means to data consumers. JMIS, 12(4), 1996.


	Introduction
	Data Quality Revisited
	A Data Quality Framework
	Noise Generators
	Measuring Task Result Variations
	Sensitivity Factor Computation
	Experiments
	Related Work
	Conclusion
	References

