
2020 IEEE International Conference on Big Data (Big Data)

978-1-7281-6251-5/20/$31.00 ©2020 IEEE 3109

Real-time Traffic Jam Detection and Congestion
Reduction Using Streaming Graph Analytics
Zainab Abbas∗, Paolo Sottovia†, Mohamad Al Hajj Hassan†, Daniele Foroni†, Stefano Bortoli†

∗KTH Royal Institute of Technology, Stockholm, Sweden
†Huawei Munich Research Centre, Munich, Germany

∗zainabab@kth.se, †{paolo.sottovia, mohamad.alhajjhassan, daniele.foroni, stefano.bortoli}@huawei.com

Abstract—Traffic congestion is a problem in day to day life,
especially in big cities. Various traffic control infrastructure
systems have been deployed to monitor and improve the flow of
traffic across cities. Real-time congestion detection can serve for
many useful purposes that include sending warnings to drivers
approaching the congested area and daily route planning. Most
of the existing congestion detection solutions combine historical
data with continuous sensor readings and rely on data collected
from multiple sensors deployed on the road, measuring the speed
of vehicles. While in our work we present a framework that
works in a pure streaming setting where historic data is not
available before processing. The traffic data streams, possibly
unbounded, arrive in real-time. Moreover, the data used in our
case is collected only from sensors placed on the intersections
of the road. Therefore, we investigate in creating a real-time
congestion detection and reduction solution, that works on traffic
streams without any prior knowledge. The goal of our work is 1)
to detect traffic jams in real-time, and 2) to reduce the congestion
in the traffic jam areas.

In this work, we present a real-time traffic jam detection
and congestion reduction framework: 1) We propose a directed
weighted graph representation of the traffic infrastructure net-
work for capturing dependencies between sensor data to measure
traffic congestion; 2) We present online traffic jam detection
and congestion reduction techniques built on a modern stream
processing system, i.e., Apache Flink; 3) We develop dynamic
traffic light policies for controlling traffic in congested areas
to reduce the travel time of vehicles. Our experimental results
indicate that we are able to detect traffic jams in real-time and
deploy new traffic light policies which result in 27% less travel
time at the best and 8% less travel time on average compared to
the travel time with default traffic light policies. Our scalability
results show that our system is able to handle high-intensity
streaming data with high throughput and low latency.

Index Terms—streaming graphs, scalable, congestion, traffic
jams, real-time

I. INTRODUCTION

With the plethora of vehicles used to commute every day,
traffic congestion has become a common sight. It is impor-
tant to monitor traffic flows to prevent congestion to avoid
a multitude of problems. Some of these problems include:
increase in fuel consumption and pollution [1], decrease in
economy [2] and traffic safety that is caused by a speed
variance between cars in the congested region compared to

Zainab conducted this work partly during her internship at the Huawei
Munich Research Centre, Munich, Germany.

cars moving freely [3], and harmful effects on the mental and
physical health of people [4], [5].

Mitigating congestion is thus an essential task of a traffic
control system. Moreover, there are real-time requirements of
modern traffic control systems that require a traffic moni-
toring and congestion control mechanism with low latency.
In this work, we investigate on real-time traffic jam detec-
tion and congestion reduction over traffic streams. Real-time
congestion detection can help in sending safety warnings to
drivers approaching the congested region to avoid accidents,
to do daily route planning, and to deploy various policies for
mitigating congestion. Once congestion is detected in real-
time, congestion mitigation can be done by setting up speed
limits for the vehicles approaching the congested region and
by controlling the traffic lights for limiting incoming traffic
towards the congested region. Therefore, an online traffic
stream processing based solution is necessary in order to
efficiently mitigate traffic congestion by measuring the current
traffic conditions.

Most of the existing congestion detection algorithms [6]–
[8] use historic data and are thus suitable to work offline
because in a pure streaming setup no prior knowledge about
the stream is available. An online system is required to
process unbounded streams, making congestion detection and
mitigation challenging. One example of such offline technique
is [6], which uses link journey times of vehicles to detect
congestion. It requires historic information on past link journey
times to detect non-recurrent congestions. Hence, it is not
efficient for real-time use.

In order to detect traffic jams caused by congestion in real-
time, we represent the traffic infrastructure network in the
form of a directed weighted graph to capture correlations be-
tween traffic sensors based on the dependencies between their
generated data streams. An example of such a dependency is
that a vehicle detected by one sensor will also be detected by
another sensor a few moments later in the traffic flow direction.
Another example of a dependency is a traffic queue moving
in the opposite direction of the traffic flow during the traffic
jam that causes slow down of cars approaching the end of
the queue, resulting in dependency between readings of the
sensors placed in the opposite direction of the traffic flow.
These dependencies are taken into account by us in measuring
traffic flow variables that are used for the detection of traffic
jams and tracking of traffic jams’ propagation.

20
20

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

 D
at

a)
 |

97
8-

1-
72

81
-6

25
1-

5/
20

/$
31

.0
0

©
20

20
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

00
22

.2
02

0.
93

78
06

8

3110

In this work, we use traffic flow theory [9] combined with
graph analytics to detect traffic jams in the streaming traffic
data. Next, we develop a streaming graph-based algorithm to
find correlated traffic jams in the network. We also propose
a congestion mitigation/reduction mechanism by dynamically
changing traffic light policies to control the traffic flow moving
towards the congested region.

The main contributions of our work are as follows.
• We represent the traffic infrastructure network in the form

of a directed weighted graph to capture the spatial and
temporal dependencies of the traffic streaming data. We
use our proposed graph representation to measure traffic
flow variables that are valuable for traffic jam detections.

• We propose to offer an end-to-end traffic control frame-
work based on Apache Flink [10]. Our system comprises
of 1) an online traffic jam detection mechanism for
detecting jams on streaming data collected from traffic
sensors, and 2) a congestion reduction mechanism based
on streaming graph analytics for reducing the effect of
congestion in the congested area. In our proposed con-
gestion reduction approach, we identify correlated traffic
jams and essential parts in the road network on which new
traffic light policies are deployed for congestion control.

• We develop dynamic traffic light policies based on our
congestion reduction mechanism that helps in mitigating
the impact of congestion by reducing the travel time of
cars during traffic jams.

• We have evaluated our traffic jam detection and con-
gestion reduction techniques using both real-life and
synthetic datasets to test the performance and scalability
of our system.

Main Findings: Our results indicate that application of
dynamic traffic light policies in the congested regions and its
neighboring regions yields less travel time of vehicles. Fur-
thermore, our traffic jam detection and congestion reduction
system gives high throughput and low latency by keeping min-
imal state in memory thus enabling high-speed processing of
large scale streaming data. From these results, we believe that
considering the real-time requirement of traffic optimization,
using our proposed framework, a simple consumer machine
would allow us to monitor and to help mitigate congestion in
large urban areas.

Structure: The remainder of the paper is structured as
follows. We present the preliminaries in Section II. Section III
gives the overview of our framework and presents the traffic
jam detection mechanism, Section IV describes congestion
reduction mechanism, followed by Section V explaining the
evaluation experiments and results. Finally, the related work
is presented in Section VI and conclusion and future work in
Section VII.

II. BACKGROUND

In this section, we provide the necessary background by
introducing the fundamental traffic flow theory used to detect
congestion. We also give an overview of streaming graph-

based analytics used in implementing our real-time congestion
detection policies.

A. Traffic Flow Theory

Traffic flow theory is the study of vehicles’ behaviour on
road; it helps to explain the vehicle flow and the interaction
of vehicles with each other. Mainly three traffic variables are
used to explain the vehicles’ movements on road, namely [9]:
1) traffic flow q (number of vehicles per unit time) that is
the number of vehicles passing a particular point on road, 2)
density k (number of vehicles per unit distance) that is the
concentration of vehicles on road, and 3) speed v (distance
covered per unit time). The three variables are related as:

q = k × v (1)

Fig. 1: The fundamental curve of road traffic flow

The fundamental traffic flow theory diagram, as shown in
Fig.1, gives us a useful relation between the three traffic flow
theory variables. At the start of the curve, the flow q of
cars increases along with the density k; during this phase
the vehicles move with free-flow speed Vf , represented by
a positive slope on the curve. When q increases further the
density k reaches its critical value kcritical. At this point, the
flow is maximum, i.e., qmax. Beyond kcritical the vehicles’
movements become restricted because their concentration is
increasing on the road, thus we see a decrease in the speed
with a negative slope. kjam indicates the traffic jam density,
at this point the speed is very low due to congestion.

B. Traffic Congestion

Traffic congestion is a state of the traffic on the road
in which the vehicles cannot move freely on road, their
movements are restricted, i.e., vehicles cannot easily overtake
each other, change lane, or move at high speed. Congestion
can be caused by a poorly designed road infrastructure that
is unable to meet the traffic demand. It can also be caused
by external factors, such as rainy weather, accidents, and road
repair work. On the contrary to congestion, ”free-flow” state
is the one in which vehicles can easily overtake, change lane
and increase speed [11], [12].

Congestion Detection: The fundamental traffic flow curve
can be used to find important measures, that include, maximum
free-flow qmax, free-flow speed Vf and critical density kcritical

3111

which are used to differentiate between the free-flow traffic
and the congested traffic. Fig. 2 represents the empirical
fundamental traffic flow diagram generated using one of our
real-life datasets. It shows the classical traffic flow curve
behaviour. For estimating a congestion threshold, a line (shown
in red) is drawn from the empirically computed qmax point to
the origin. All the sensor readings on the left side of the line
represent free-flow traffic and all the sensor readings on the
right side represent congested traffic.

Fig. 2: Empirical fundamental traffic flow diagram

The magnitude of congestion can be determined depending
on the distance from the congestion threshold line. The points
farther from the line indicate traffic getting more and more
congested. Different congestion levels are shown by different
shades of red. Dark red color indicates high congestion. High
congestion is the state in which traffic jams appear with
jam density kjam. Traffic density is an important measure to
determine traffic jams on road. We use density in our work as
an indicator of traffic jams.

C. Streaming Graph-Based Analytics

Graphs are very useful to represent relationships between
entities. They are being popularly used to represent social
media network data, molecular structures and complex road
networks etc. With the increase in the size of graph data
being generated, various distributed graph processing systems
emerged to process huge graphs. Most popular of them is
Apache Giraph [13]. However, these systems are not enough
to address the real-time requirements of modern applications.

Stream processing is gaining importance due to its ability
to process a huge volume of data in real-time. Processing
graph data in real-time is challenging because it combines
graph processing complexities with streaming. We built our
system using Apache Flink [10] to handle a large volume of
traffic sensor streams. Flink is a modern stream processing
system that provides good performance guarantees in terms of
high throughput and low latency. We also use Gelly-Streaming
[14], an open-source library built on top of Flink for online
processing of graphs.

III. TRAFFIC JAM DETECTION

In this section, we present an overview of our traffic jam
detection and congestion reduction system. Next, we explain
the graph representation of the dataset used in our work for
computing various traffic metrics over the traffic streaming
data and we explain how it is used for traffic jam detection.
In the end, we present the streaming graph processing based
algorithm to find connected traffic jams from the traffic stream.

A. Overview of Traffic Jam Detection and Congestion Reduc-
tion System

Our traffic jam detection and congestion reduction sys-
tem, shown in Fig. 3, is built using Apache Flink [10] and
Kafka [15]. First, the input stream from various cameras
placed on road intersections is fed to the system. A Flink
job then 1) processes the camera data stream along with the
road infrastructure information to compute traffic metrics, such
as, average speed and density of vehicles; 2) detects traffic
jams in the streams using the computed traffic metrics; 3)
identifies the traffic jams that are connected; 4) detects the
paths containing traffic jams in the traffic graph and their
neighboring paths from which the traffic is incoming to the
congested paths. These paths’ information, i.e., paths with
traffic jam and their neighboring paths, is written on the Kafka
topics as output. This data helps in creating traffic light policies
for congestion reduction in the congested region. We will
explain the congestion reduction mechanism in detail in the
next section.

Flink Job

Traffic jam detection
Connected traffic jam detection

Congestion reduction

Road
infrastructure

data

Traffic light policy calculation
component

Kafa Topic
Traffic jam data

Congestion control data

New traffic light
policies

Camera data stream

Fig. 3: Traffic jam detection and congestion control system

B. Graph Representation of Traffic DataSet

The traffic dataset used in our work is taken from a region
of Shenzhen city in China containing traffic cameras deployed
across various intersections of the roads in the city. Each
intersection contains at least one camera in every direction,

3112

which detect the number of vehicles passing that particular
part of the intersection. The camera data source is sending
traffic data stream per second to the system, making it a high-
intensity stream. To detect traffic jams and to find connected
traffic jams, the input data is represented in the form of a
graph. A graph is useful to represent relationships between
various entities in a network. In our case, the relationship exists
between various camera sensors that are deployed across the
same intersection in the network or are connected with a path
in the traffic network graph.

BA

C D

E F

G H

Intersections -> vertices

paths -> edges

Fig. 4: Graph representation of traffic data

Fig. 4 presents the road network of one of the regions from a
city in China, which contains eight intersections, namely, A, B,
C, D, E, F, G and H. Each intersection has at least one camera
in every direction depending upon the number of directions
from which the vehicles are passing these intersections. In
order to create a graph of this network, we represented the
camera sensors placed over intersections as vertices of the
graph and possible paths that vehicles can take between
these intersections as directed edges of the graph. The traffic
graph is created using the road infrastructure data information.
The edges of the graph are then labelled dynamically using
the camera data stream, which contains the sensor ID, the
timestamp, the number of vehicles passing the sensor in the
direction of the directed edge and their number plates.

C. Traffic Jam Detection

We detect traffic jams on the streams by computing the
traffic density, that is the concentration of vehicles on the
segment of the road. The stream we receive, per second, from
cameras contains the number of vehicles that pass the sensor,
i.e., the traffic flow, and their number plates. First, we use this
information to compute the average speed of the vehicles that
are detected by the sensors, then we use the flow and speed
values to compute the density of vehicles for detecting traffic
jams using equation 1.

BA

C D

E F

G H

Car x, north
Car y, north

08:00 am

(a) vehicles detected at 08:00 am

BA

C D

E F

G H

Car x, north
Car y, north

08:02 am

(b) vehicles detected at 08:02 am

Fig. 5: Vehicles detected across various intersections on the
road

We explain our approach to compute traffic density with a
simple scenario given in Fig. 5, where we assume, for sim-
plicity, that the distance between each intersection connected
is 0.5 km. Fig. 5a shows that two cars, with number plates
Car x and Car y, were detected at intersection D coming from
the north direction. Later at 08:02 am in Fig. 5b, Car x and
Car y are detected at intersection F. In order to compute the
average speed of cars at the intersections we keep one-hop
records of the vehicles that cross the intersections. In the given
scenario, Car x and Car y made one-hop from intersection D
to F coming from the north direction in 2 min (08:00 am to
08:02 am). The average speed of vehicles crossing the sensor
detecting vehicles from the north on intersection F at 08:02
am is computed using the travel time of Car x and Car y
coming from D to F and the distance between D to F. In this
case, the average speed is ≈ 15 km/h. This average speed
value v is then used along with the aggregated traffic flow
q value, that is aggregated per minute, to estimate the traffic
density at the path from D to F using equation 1. Similarly,
traffic density values are computed over the stream at various
intersections using the one-hop speed of vehicles at a particular
time interval. We only keep one-hop trip information for speed
computation of vehicles, as soon as the speed is computed we
replace this information with the next-hop data to keep the
state in memory minimal. Based on our empirical results, the
traffic density ≥ 140 veh/km [16] indicates a traffic jam on
the road. We use this threshold to identify the paths in the
graph containing traffic jams.

D. Connected Traffic Jams

Once we detect the paths containing traffic jams in the
graph, we use a streaming graph-based algorithm to track the
propagation of traffic jams across the network and to find the
traffic jams that are connected. Fig. 6a shows two paths in
the graph, i.e, BD, and EC, labelled as congested (red edges).
These paths indicate the presence of traffic jams across them at
08:30 am. Fig. 6b shows another path AB labeled as congested

3113

at 08:47 am. This path is connected to the previous congested
path BD, thus the traffic across them are part of the same traffic
jam. We adapted the connected components algorithm [17]
over streaming graphs to find the connected traffic jams in our
graph of traffic streams and track their propagation in time.

BA

C D

E F

G H

08:30 am

(a) traffic jam at 08:30 am

BA

C D

E F

G H

08:47 am

(b) traffic jam at 08:47 am

Fig. 6: Traffic jams detected across the network

Input: Incoming stream of congested edges (x, y, w)
Output: Traffic Jam IDs for each vertex x and y
begin

foreach edge (x, y, w) do
foreach j ∈ J do

if Set j contains both x and y then
/* Both vertices have been

seen before */
return

end
else if x and y are in different sets then

merge the two sets and set the id of the
new set to minimum of both set ids

end
else

/* Only one of the vertices
has been seen before */

if x is in a set, add y to the same set,
and vice versa

end
end
/* x and y vertices have not

been assigned before */
create new set with id min(x.id, y.id)

and assign x and y to it
end
Return J

end

Algorithm 1: Pseudo-code for detecting connected traf-
fic jams

Algorithm 1 contains the pseudo-code of the connected
traffic jam algorithm for graph streams. A graph stream is
created in the form of streaming edges [18], where each
edge (x, y) has two-end vertices x and y. In our case, the
end-vertices represent the intersection IDs and we create a
weighted edge, (x, y, w), with the weight w equal to the traffic
density value on the destination vertex. For example, for the
path BD (in Fig. 6), assuming it has a density 150 veh/km
at 08:30 am at D, an edge representing this information will
be created as (B,D,150). After creating these edges, they are
first filtered based on our traffic density threshold, i.e., 140
veh/km. These filtered edges are denoted as congested edges
in the pseudo-code. For each incoming edge in the stream, the
end vertices x and y are assigned to a set j with j.id, where id
indicates the traffic jam id and j represents a set containing
vertices that belong to the traffic jam with the assigned id.
The end vertices are assigned based on the given rules: 1) If
all of the sets, j ∈ J , does not contain x and y, then create
a new set j with id that is minimum of x.id and y.id. 2) If
either of x and y and present in j, then add the other vertex
to the same j. 3) If both x and y are present in the same j, do
nothing. 4) If both x and y and present in different sets then
merge the two sets and set id to the minimum value of both
set ids.

In the case of the aforementioned scenario in Fig. 6, our
algorithm will result in giving two groups of traffic jams, i.e.,
group 1 (B, D, A) containing intersection IDs for paths AB
and BD, and group 2 (E, C) containing intersection IDs for
the path EC. Once we detected the connected traffic jams, they
are used in the congestion reduction policies that we discuss
next.

IV. CONGESTION REDUCTION

In this section, we present our congestion reduction scheme.
We first explain the identification of paths in the traffic network
that are selected for deploying new traffic light policies and
then explain the changes we make to the traffic lights along
these paths in the road network.

A. Selection of Paths for Deploying New Traffic Light Policies

For reducing the effect of traffic jams, once they are detected
in the traffic network, we identify the links that are essential
to reduce the overall travel time of the cars in the congested
area. The aim of identifying these links is 1) to control the
traffic that is moving towards the congested region to avoid
further congestion in that region and, 2) to reduce the travel
time of cars that are in the congested region. Fig. 7 shows two
traffic jams detected at 08:47 am. Path AB and BD are part
of the first traffic jam and the EC is part of the second traffic
jam. The traffic moving towards the first traffic jam is coming
from path AC (highlighted in green) and the traffic moving
towards the second traffic jam is coming from paths FE and GE
(highlighted in green). In order to find these paths highlighted
in green, we do one-hop backward propagation in the graph
from the intersections that are part of traffic jams (highlighted
in red and yellow) and get the ids of the sensors located

3114

along these backward propagation paths (highlighted in green).
Policies for traffic lights placed on these backward propagation
paths along with the paths that are in the congested region are
then changed to reduce the overall effect the congestion.

BA

C D

E F

G H

08:47 am

Fig. 7: Paths in traffic network containing vehicles moving
towards the congested regions

B. Traffic Light Policies
The traffic light policies are built to control the red and

green signal time of traffic lights. Typically the traffic light
policies are fixed and do not react dynamically to the changes
in traffic. In our work, we dynamically change the traffic light
policies to control the green signal time of the traffic lights
placed on roads under congestion, marked in red and yellow
in Fig. 7, and the roads containing traffic moving towards the
congested area marked in green in Fig. 7. We change the green
signal time either by increasing it with bonus addition or by
decreasing it with bonus removal. Adding a bonus gives more
green time for the vehicles to pass the intersection. Alternately,
subtracting a bonus gives less green time for the cars to pass
the intersection. A bonus is added to the traffic lights green
signal time in the congested region to allow more cars to pass
the intersection to reduce the concentration of vehicles stuck
in a traffic jam. A bonus is subtracted from the green signal
time of traffic lights placed on roads containing traffic moving
towards the congested region to allow fewer cars to move
towards the congested regions. The bonus is computed using
the given formula:

bonus = ((knode − kjam) ∗ bonus factor)/100 (2)

Here, bonus factor here is 0.3 times the green time, where
green time is the time during which the traffic signal is green.
knode is the traffic density value at the node in the graph
which selected for bonus application, and kjam is the density
value threshold during traffic jam set to 140 veh/km based on
empirical results and theoretically suggested traffic jam density
threshold [16].

TABLE I: Datasets with their attributes used in experiments

Attributes Region 1 Grid
intersections 8 225
sensors 28 900
records 2,419,200 137,721,600
size of storage 1GB 50GB

V. EXPERIMENTAL EVALUATION

In this section, first, we explain the experimental setup
and datasets used in our work to evaluate the performance
of our proposed traffic jam detection and congestion control
framework. Then, we present the experimental results of our
work. The aim of our experiments is to measure, 1) the
performance of our system in terms of reducing the effect
of congestion on roads, and 2) the scalability of system in
terms of handling high-intensity streams from a large number
of camera detectors.

Datasets: Datasets used in our experiments consist of both
real-life and synthetic datasets. Information about the datasets
used in our experiments is given in Table I. The first dataset,
which we refer as Region 1, is a real-life dataset taken
from a region of one metropolitan city, namely Shenzhen, in
China. This dataset is collected from various traffic sensors
deployed across intersections of the roads. The type of sen-
sors from which data is collected is cameras. The cameras
send per second information about the vehicles crossing the
intersection. This per second stream consists of a timestamp,
number of vehicles crossing, their number plates and the
direction from which they arrive. Region 1 consists of 8 road
intersections containing 28 number of traffic sensors, where
each intersection has a camera in every direction. Region 1
dataset consists of a total of ≈ 2 million records that are
collected over a period of 24 hrs. The records consist of
vehicle detections sent per second by the sensors. The second
dataset, which is bigger, is used to test the scalability of
the system. It is a synthetically generated Grid dataset using
SUMO simulator tool [19] based on the traffic behaviour of
our real traffic datasets. The road network for this large dataset
is a squared grid with 225 intersections. Each intersection is
connected to its neighboring intersections with two lanes (one
per direction) of 400 meters length. Grid consists of a total of
900 sensors generating per second streaming data. This makes
more than 137 million data points in the data for a period of
12 hrs. The size of this dataset is around 50 GB.

Experimental Setup: We performed our experiments
on a physical on-premises machine. Its specs are Intel
(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, Linux
OS and 32 GB of RAM. We used Apache Flink v1.10.0 with
a local cluster consisting of one job manager and one task
manager consisting of 8 parallel task slots. Furthermore, we
used Kafka v2.12. The traffic jam detection and congestion
control framework is written in Java 8.

Metrics: We measure the performance of our system in
terms of reducing the effect of congestion on road in Sec-
tion V-A. We compute the travel time of cars after applying

3115

changes to the traffic light polices once the traffic jam is
detected. We compare this travel time to the base-line travel
time of cars with default traffic light policies. Next, we
measure the scalability of our framework, in Section V-B, by
computing the throughput, i.e, the number of records processed
by the system per second with an increasing traffic stream, and
the latency, i.e, the time to process one record by the system
with an increasing traffic stream.

A. Congestion Reduction

In this section, we explore the effect of the bonuses that
are applied to the traffic lights dynamically as a part of our
congestion reduction policies after detecting congestion. We
generated three different disruption scenarios in the simulation
to capture the effect on travel times of cars. The scenarios were
created by blocking two links in the graph of Region 1 for 10
min, 20 min and 25 min. Fig. 8 is a snapshot taken from
the SUMO simulator tool that contains two cars shown in red
creating disruption on the road network.

In the disruption scenarios, we measure the average travel
time of cars during their trips after applying the congestion
reduction policies, denoted as TTR, and compare it to the
average travel time of cars during the trips without the
congestion reduction policies, denoted as TTC. The normal
travel time of cars on the same trips with no disruption is
denoted as TTN.

Fig. 8: Disruption created using two blocking vehicles shown
in red

1) 10 min disruption: Fig.9 shows the average trip times of
vehicles with (TTR) and without (TTC) congestion reduction
policies after a 10 min disruption is created. TTN is the
average travel time without disruption. A traffic jam is detected
after 08:30 am. Overall TTR is lower compared to TTC,
resulting in fewer travel times of all cars with the application
of congestion reduction policies. During the traffic jam interval
from 08:30 onwards till 09:10, the average travel time of all
cars is reduced by ≈ 15%, at the best at 08:50. After the
traffic jam interval, 09:10 onwards, the reduction in travel
time is even more as TTR is lower compared to TTC. The
average time reduced after 09:10 is ≈ 27%, at the best.
Overall during disruption, vehicles have ≈ 8% less travel time
after bonuses are applied to traffic lights during congestion

reduction, compared to travel time with default traffic light
policies.

Fig. 9: Average travel time of vehicles with 10 min disruption

2) 20 min disruption: Fig.10 shows the average trip times
of vehicles with (TTR) and without (TTC) applying congestion
reduction policies on traffic lights after a traffic jam is detected
around 08:30 am for the 20 min disruption scenario. Overall
cars take less travel time with congestion reduction policies
since TTR is lower compared to TTC. During the traffic
jam interval, i.e., from 08:30 onwards till 09:10, the average
travel time of all cars is reduced by ≈ 15%, at the best at
09:10. After 09:10, TTR continues to be lower than TTC.
The average travel time reduced after 09:10 is ≈ 18%, at the
best. Overall all cars take 5% less travel time after applying
congestion reduction policies compared to travel time with
default policies.

Fig. 10: Average travel time of vehicles with 20 min disruption

3) 25 min disruption: Fig.11 plots the average trip times of
vehicles with (TTR) and without (TTC) applying congestion
reduction policies to the traffic lights for the 25 min disruption
scenario. A traffic jam is detected after 08:30. Similar to
10 min and 20 min disruption cases, overall TTR is lower
compared to TTC indicating fewer travel times of all cars with
the application of congestion reduction policies. On average
all cars take ≈ 5% less travel time, and at the best ≈ 22% less
travel time, after congestion reduction policies are applied to
the traffic lights, compared to travel time with default policies.

Bonus Application: For understanding the behaviour of
TTR, we plot the bonuses computed during the aforementioned
disruption in Fig.9. With reference to the Fig.7, we created a
disruption for the 10 min scenario on the edge EC. In order to

3116

Fig. 11: Average travel time of vehicles with 25 min disruption

allow more cars to pass during the congestion, we give more
green time to the traffic light placed at the intersection C. The
bonuses added to the traffic light at the intersection C are given
in Fig.12. Furthermore, we reduce the green signal time of the
traffic lights placed at the intersection E to allow fewer cars to
move towards the intersection C. Fig.13 shows the bonus time
reduced from the green time of the traffic lights (two in this
case) on intersection E controlling the traffic moving towards
C. This bonus application helps in mitigating the effect of
congestion overall by allowing fewer cars to move towards C
and more cars to get out of the congestion at C.

Fig. 12: Bonuses applied at intersection C

Fig. 13: Bonuses applied at intersection E

Comparison: We compare the congestion results for all
three disruption scenarios by measuring the travel time of
vehicles that were only in the congested region during the
disruption scenario, i.e., the region where the traffic jam is
detected. We take into account the vehicles for which the travel
time was reduced after applying bonuses to the traffic lights.
Fig. 14a plots average travel times of the aforementioned
vehicles with bonuses applied to traffic lights and the average
travel times of these vehicles with the default static traffic light
plans. For 10 min disruption scenario, the average travel time

of 4242 vehicles is ≈ 35% less with bonuses applied to traffic
lights compared to the default static policies. Similarly, for
20 min disruption, the average travel time of 4163 vehicles
is ≈ 31% less with bonuses. Lastly, for 25 min disruptions,
the average travel time of 6663 vehicles is ≈ 36% less with
bonuses applied to traffic lights compared to static plans.

(a) Average travel time of cars
in congested region for different
disruption scenarios

(b) Maximum travel time gain in
the congested region for different
disruption scenarios

Fig. 14: Comparison of travel time gains for 10 min, 20 min
and 30 min disruption

Fig. 14b shows the travel time of cars during the three
aforementioned disruption scenarios that had the most travel
time gain. Travel time gain is the difference in trip time during
static traffic light policies from the trip time during bonus
based policies. Our results for the best single vehicle trips
show that the vehicle takes almost 3× less travel time for 10
min, 4× less travel time for 20 min, and more than 6× less
travel time for 25 min disruption scenario when bonuses are
applied to traffic lights compared to the default traffic light
policies.

B. Scalability

We now evaluate the scalability of our traffic jam detection
and congestion reduction system by measuring the throughput
and latency. The input dataset used for the scalability test is
the Grid dataset comprising of total 137,721,600 records. In
order to process the dataset in a distributed manner, we used a
Taskmanager in Flink with 8 parallel task slots. It took a total
of ≈ 40 min to process the complete dataset. We measured
the throughput and latency of our system during the complete
processing job of the dataset.

1) Throughput: Fig. 15 shows the throughput of our system
on the y-axis in terms of records processed per second and
the x-axis shows the percentage of stream processed from
the total dataset. Throughput of the system slightly increases
with the increase in processing of the data stream. Throughput
curve starts with around 56000 records/sec when 10% data
is processed and goes up till 57056 records/sec at 70%
processed stream. Finally, the throughput is the highest, i.e.,
57104 records/sec, when the complete stream is processed.
The throughput curve shows that our system is capable of
achieving high throughput during the processing of the stream.

2) Latency: Fig. 16 shows the latency of our system on
the y-axis in terms of milliseconds and the x-axis shows the
percentage of stream processed from the total dataset. Our plot

3117

Fig. 15: Throughput of the system

depicts that latency of the system, in general, decreases with
the increase in the percentage of the processed stream. Latency
slightly increases at 30% processing of data, then goes low
again at 60% processing of data. The throughput curve shows
that our system has a very low latency during the processing
of a big data stream.

Fig. 16: Latency of the system

Findings: Our results indicate that 1) applying dynamic
traffic light policies in the congested regions and its neighbor-
ing regions yields less travel time of cars. The average travel
time of all cars is reduced at the best by 27% in 10 min,
18% in 20 min and 22% in 25 min disruption scenario and,
2) our traffic jam detection and congestion reduction system
gives high throughput and low latency by keeping minimal
state in memory yielding high-speed processing of large scale
streaming data. From these results, we can deduce that consid-
ering the real-time requirement of traffic optimization, using
our proposed framework, a simple consumer machine would
allow us to monitor and help mitigating congestion in large
urban areas.

VI. RELATED WORK

Several interesting research has been done on traffic moni-
toring, more specifically for congestion detection. One of the
most popular and widely used congestion detection systems is
Google Maps [20]. It uses probe vehicles and data collected
from cellphones with GPS to monitor traffic. However, this
method is based on massive data collection and raises privacy
concerns according to the General Data Protection Regulation
(GDPR) laws [21].

Existing work done on congestion detection by Anbaroglu
et al. [6], [7] detects congestion using link journey times of

cars. Soylemezgiller et. al [8] proposes a road pricing model
for reducing congestion on the road. These approaches make
use of historic data that includes past link journey times and
other past statistics of the road at a specific hour of the day.
In a pure streaming system, this historic data is not available,
making these approaches not suitable to be implemented for
online processing.

Other techniques include vision-based congestion detec-
tion [22]–[25]. These techniques require computationally ex-
pensive pre-processing steps that include feature extraction,
background subtraction etc., thus making them unsuitable
for real-time congestion detection system with low latency
requirements over large scale streaming data. Recently var-
ious studies [26]–[28] have been done on using vehicular
ad hoc networks (VANETs) for local congestion information
propagation in real-time. In this approach, a vehicle collects
its surrounding information about speed, position etc, and
sends messages to surrounding vehicles. There are several
problems with VANETs based techniques that still need to
be addressed. Firstly, information disseminating on urban
roads is challenging due to their complex topology. Secondly,
cooperation among vehicles is not very effective making
congestion detection imprecise and challenging in real-time.
Moreover, we use fixed-point dataset in our work, VANETs
based approaches cannot work on our dataset. Besides this,
several neural network-based techniques [29]–[33] are being
explored to detect and predict congestion. Since they all
require historic data for training, we are unable to use them in
our work for building a stream processing based traffic control
system.

Another activity related to congestion detection is incident
detection. An incident happens due to congestion on unusual
times. INGRID [34] and RAID [35], to name a few, are
systems developed for incident detection. Both these systems
make use of inductive loop detectors. In order to monitor
traffic with induction loops, multiple of them need to be
installed on the roads for accuracy of traffic metrics measured.
Furthermore, they are expensive to install, which makes them
not economic to use in large cities. Our congestion detection
mechanism works only with a camera installed on the inter-
sections of the road. Which are less in number and cheaper
compared to induction loops.

VII. CONCLUSION AND FUTURE WORK

In this work, we address the problem of traffic congestion
detection and mitigation using real-life data collected from a
region in one of the largest metropolis cities of China. We
proposed an end-to-end framework built on top of a modern
stream processing system, i.e., Apache Flink. Flink is used
because of its high throughput and low-latency guarantees. Our
framework comprises of two mechanisms: 1) an online traffic
jam detection mechanism for detecting jams on streaming data
collected from traffic sensors, and 2) a congestion reduction
mechanism based on streaming graph analytics for reducing
the effect of congestion in the congested area. In our proposed
congestion reduction approach, we identify correlated traffic

3118

jams and essential parts in the road network on which new
traffic light policies are deployed for congestion control. With
the proposed framework, we are not only able to detect traffic
jams in real-time, but we also apply dynamic traffic light
policies that yield less travel time of vehicles in the congested
region. Moreover, our system is capable of processing high-
intensity and large scale traffic stream with low-latency and
high throughput because the memory state is kept minimum.

We believe that our work, which is based on a real-life
case study, is effective in giving the desired performance
and scalability in traffic congestion detection and mitigation.
This work can help in monitoring and reducing congestion
considering the real-time requirement of traffic optimization
in a large urban area.

For future work, we consider investigating more into dy-
namic traffic light policy adaption. The policy adaption and
removal strategies can be deeply investigated to bring more
effective results.

ACKNOWLEDGMENT

We would like to thank Cristian Axenie and Alexander
Wieder from the Huawei Munich Research Centre, and Stella
Maropaki from NTNU, Norway, for their valuable feedback
and guidance. Furthermore, Zainab is funded by the Erasmus
Mundus Joint Doctorate program in Distributed Computing
(EACEA of the European Commission under FPA 2012-0030).

REFERENCES

[1] M. Barth and K. Boriboonsomsin, “Real-world carbon dioxide impacts
of traffic congestion,” Transportation Research Record, vol. 2058, no. 1,
pp. 163–171, 2008.

[2] P. Goodwin, “The economic costs of road traffic congestion,” 2004.
[3] U. States., Vehicle- and infrastructure-based technology for the preven-

tion of rear-end collisions [electronic resource]. National Transporta-
tion Safety Board Washington, D.C, 2001.

[4] D. Stokols, R. W. Novaco, J. Stokols, and J. Campbell, “Traffic con-
gestion, Type A behavior, and stress.” Journal of Applied Psychology,
vol. 63, no. 4, pp. 467–480, 1978.

[5] J. Currie and R. Walker, “Traffic Congestion and Infant Health: Evidence
from E-ZPass,” American Economic Journal: Applied Economics, vol. 3,
no. 1, pp. 65–90, Jan. 2011.

[6] B. Anbaroglu, B. Heydecker, and T. Cheng, “Spatio-temporal clustering
for non-recurrent traffic congestion detection on urban road networks,”
Transportation Research Part C: Emerging Technologies, vol. 48, pp.
47–65, Nov. 2014.

[7] B. Anbaroglu, T. Cheng, and B. Heydecker, “Non-recurrent traffic
congestion detection on heterogeneous urban road networks,” Transport-
metrica A: Transport Science, vol. 11, pp. 1–33, 09 2015.

[8] F. Soylemezgiller, M. Kuscu, and D. Kilinc, “A traffic congestion
avoidance algorithm with dynamic road pricing for smart cities,” in 2013
IEEE 24th Annual International Symposium on Personal, Indoor, and
Mobile Radio Communications (PIMRC), 2013, pp. 2571–2575.

[9] M. J. Lighthill and G. B. Whitham, “On kinematic waves ii. a theory
of traffic flow on long crowded roads,” Proc. R. Soc. Lond. A, vol. 229,
no. 1178, pp. 317–345, 1955.

[10] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink™: Stream and batch processing in a single
engine,” IEEE Data Eng. Bull., vol. 38, pp. 28–38, 2015.

[11] B. S. Kerner, The physics of traffic: empirical freeway pattern features,
engineering applications, and theory. Berlin: Springer, 2010.

[12] H. Rehborn and J. Palmer, “Asda/foto based on kerner’s three-phase
traffic theory in north rhine-westphalia and its integration into vehicles,”
in 2008 IEEE Intelligent Vehicles Symposium, 2008, pp. 186–191.

[13] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
“One trillion edges: Graph processing at facebook-scale,” Proc. VLDB
Endow., vol. 8, no. 12, p. 1804–1815, Aug. 2015. [Online]. Available:
https://doi.org/10.14778/2824032.2824077

[14] J. D. Bali, “Streaming graph analytics framework design,” Master’s
thesis, KTH, School of Information and Communication Technology
(ICT), 2015.

[15] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, vol. 11, 2011,
pp. 1–7.

[16] V. L. Knoop and W. Daamen, “Automatic fitting procedure for the
fundamental diagram,” Transportmetrica B: Transport Dynamics, vol. 5,
no. 2, pp. 129–144, 2017.

[17] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, “Graph
distances in the data-stream model,” SIAM Journal on Computing,
vol. 38, no. 5, pp. 1709–1727, 2008.

[18] Z. Abbas, V. Kalavri, P. Carbone, and V. Vlassov, “Streaming graph par-
titioning: an experimental study,” Proceedings of the VLDB Endowment,
vol. 11, no. 11, pp. 1590–1603, 2018.

[19] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. WieBner,
“Microscopic traffic simulation using sumo,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018,
pp. 2575–2582.

[20] “The bright side of sitting in traffic: Crowdsourcing road congestion
data.” [Online]. Available: https://googleblog.blogspot.com/2009/08/
bright-side-of-sitting-in-traffic.html

[21] “General data protection regulation (eu),” Tech. Rep., 2016.
[Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/
PDF/?uri=CELEX:32016R0679&from=EN

[22] F. Porikli and Xiaokun Li, “Traffic congestion estimation using hmm
models without vehicle tracking,” in IEEE Intelligent Vehicles Sympo-
sium, 2004, 2004, pp. 188–193.

[23] G. Di Leo, A. Pietrosanto, and P. Sommella, “Metrological performance
of traffic detection systems,” IEEE Transactions on Instrumentation and
Measurement, vol. 58, no. 9, pp. 3199–3206, 2009.

[24] F. Mehboob, M. Abbas, and R. Jiang, “Traffic event detection from
road surveillance vide os based on fuzzy logic,” in 2016 SAI Computing
Conference (SAI), 2016, pp. 188–194.

[25] Q. Wang, J. Wan, and Y. Yuan, “Locality constraint distance
metric learning for traffic congestion detection,” Pattern Recogn.,
vol. 75, no. C, p. 272–281, Mar. 2018. [Online]. Available:
https://doi.org/10.1016/j.patcog.2017.03.030

[26] S. A. Vaqar and O. Basir, “Traffic pattern detection in a partially
deployed vehicular ad hoc network of vehicles,” IEEE Wireless Com-
munications, vol. 16, 2009.

[27] R. Bauza and J. Gozálvez, “Traffic congestion detection in large-scale
scenarios using vehicle-to-vehicle communications,” Journal of Network
and Computer Applications, vol. 36, no. 5, pp. 1295–1307, 2013.

[28] L. Zhang, D. Gao, W. Zhao, and H.-C. Chao, “A multilevel information
fusion approach for road congestion detection in vanets,” Mathematical
and Computer Modelling, vol. 58, no. 5-6, pp. 1206–1221, 2013.

[29] X. Yu, S. Xiong, Y. He, W. E. Wong, and Y. Zhao, “Research on campus
traffic congestion detection using bp neural network and markov model,”
Journal of information security and applications, vol. 31, pp. 54–60,
2016.

[30] X. Cheng, W. Lin, E. Liu, and D. Gu, “Highway traffic incident detection
based on bpnn,” Procedia Engineering, vol. 7, pp. 482–489, 2010.

[31] B. P. L. Lo and S. Velastin, “Automatic congestion detection system for
underground platforms,” in Proceedings of 2001 International Sympo-
sium on Intelligent Multimedia, Video and Speech Processing. ISIMP
2001 (IEEE Cat. No. 01EX489). IEEE, 2001, pp. 158–161.

[32] Z. Abbas, A. Al-Shishtawy, S. Girdzijauskas, and V. Vlassov, “Short-
term traffic prediction using long short-term memory neural networks,”
in 2018 IEEE International Congress on Big Data (BigData Congress),
2018, pp. 57–65.

[33] Z. Abbas, J. R. Ivarsson, A. Al-Shishtawy, and V. Vlassov, “Scaling deep
learning models for large spatial time-series forecasting,” in 2019 IEEE
International Conference on Big Data (Big Data), 2019, pp. 1587–1594.

[34] D. Bowers, R. Bretherton, and G. Bowen, “The astrid/ingrid incident
detection system for urban areas,” Tech. Rep., 1995.

[35] T. Cherrett, B. Waterson, and M. McDonald, “Remote automatic incident
detection using inductive loops,” in Proceedings of the Institution of Civil
Engineers-Transport, vol. 158, no. 3. Thomas Telford Ltd, 2005, pp.
149–155.

