
Moira: A Goal-Oriented Incremental Machine
Learning Approach to Dynamic Resource Cost

Estimation in Distributed Stream Processing Systems
Daniele Foroni
University of Trento

daniele.foroni@unitn.it

Cristian Axenie
Huawei ERC Munich

cristian.axenie@huawei.com

Stefano Bortoli
Huawei ERC Munich

stefano.bortoli@huawei.com

Mohamad Al Hajj Hassan
Huawei ERC Munich

mohamad.alhajjhassan@huawei.
com

Ralph Acker
Huawei ERC Munich

ralph.acker@huawei.com

Radu Tudoran
Huawei ERC Munich

radu.tudoran@huawei.com

Goetz Brasche
Huawei ERC Munich

goetz.brasche@huawei.com

Yannis Velegrakis
University of Trento
velgias@unitn.it

ABSTRACT
The need for real-time analysis is still spreading and the num-
ber of available streaming sources is increasing. The recent
literature has plenty of works on Data Stream Processing
(DSP). In a streaming environment, the data incoming rate
varies over time. The challenge is how to efficiently deploy
these applications in a cluster. Several works have been con-
ducted on improving the latency of the system or to mini-
mize the allocated resources per application through time.
However, to the best of our knowledge, none of the existing
works takes into consideration the user needs for a specific
application, which is different from one user to another. In
this paper, we propose Moria, a goal-oriented framework for
dynamically optimizing the resource allocation built on top
of Apache Flink.

The system takes actions based on the user application and
on the incoming data characteristics (i.e., input rate and win-
dow size). Starting from an initial estimation of the resources
needed for the user query, at each iteration we improve our
cost function with the collected metrics from the monitored

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
BIRTE ’18, August 27, 2018, Rio de Janeiro, Brazil
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6607-6/18/08. . . $15.00
https://doi.org/10.1145/3242153.3242160

system about the incoming data, to fulfill the user needs. We
present a series of experiments that show in which cases
our dynamic estimation outperforms the baseline Apache
Flink and the thumb rule estimation alone performed at the
deployment of the applications.

CCS CONCEPTS
• Information systems → Stream management; Pro-
cess control systems; Data stream mining;
ACM Reference Format:
Daniele Foroni, Cristian Axenie, Stefano Bortoli, Mohamad Al Hajj
Hassan, Ralph Acker, Radu Tudoran, Goetz Brasche, and Yannis
Velegrakis. 2018. Moira: A Goal-Oriented Incremental Machine
Learning Approach to Dynamic Resource Cost Estimation in Dis-
tributed Stream Processing Systems. In International Workshop on
Real-Time Business Intelligence and Analytics (BIRTE ’18), August 27,
2018, Rio de Janeiro, Brazil. ACM, Rio de Janeiro, Brazil, 10 pages.
https://doi.org/10.1145/3242153.3242160

1 INTRODUCTION
Nowadays, the amount of available data sources is cumber-
some, which is reflected in the so-called data deluge. In fact,
the data produced at any moment is continuously growing.
This data can be of two kinds: batch and streaming data.
While data batch has fixed size, data streams receive data of
an unbounded length and process it in real-time. This leads
to several additional issues.

A data stream is continuous and has no fixed length. Fur-
thermore, the number of elements received in a time window,
i.e., the input rate, is prone to vary over time. This fluctuation
of the input rate may lead to overallocation or underutiliza-
tion of the system resources since the amount of data that

https://doi.org/10.1145/3242153.3242160
https://doi.org/10.1145/3242153.3242160

BIRTE ’18, August 27, 2018, Rio de Janeiro, Brazil D. Foroni et al.

is processed is changing as the input rate fluctuates. Data
Stream Processing (DSP) applications, i.e., queries or analyt-
ics over the data, are commonly represented as a directed
acyclic graph (DAG), where the nodes are the operations to
be performed and the edges serve as data streams. Hence, the
needed optimization has to be performed on the topology
generated by the user query. In particular, using the example
of Apache Flink, we present a topology optimization that
this streaming framework enables by default. Each node of
the DAG can be replicated several times to parallelize the
task operation through the cluster where the application is
deployed for improving the performance of the user query.
Furthermore, one node can be chained with the succeeding
operator, whichmeans that theywill be executed on the same
machine and in the same thread, avoiding thread-to-thread
handover. The greedy approach would be to parallelize each
operator as much as possible and to chain them likewise.
However, splitting the work of an operator on multiple ma-
chines allocating more resources than those needed has still
a cost and we may want to actually reduce it, or we may keep
a fine-grained control of the operators while chaining two or
more leads to coarse-grained control of the operators. Hence,
the deployment of the topology for the DSP applications is
significant in order to allocate the right amount of resources
and deploy the best topology.
Several works have been proposed to bind the used re-

sources with the incoming data rate. Dhalion is a system built
on top of Heron [2] that "heals" the running application, en-
abling the self-regulation of the system, detecting symptoms
into the system metrics and applying a number of policies
to handle the rescheduling or tuning of the topology [9].
Elastic Allocator gathers information from the cluster usage
and exploits a high resource allocation through a greedy-
based algorithm [11]. Another work models the problem of
the topology that fits better the incoming data as a Markov
decision process, with a model based on Reinforcement learn-
ing [17].
However, none of these works consider the user goal for

the analytics that has to be performed. Hence, we introduce
Moira, which is a character of the Greek mythology with
decision power on the faith of humans, a dynamic cost esti-
mator system, that through the monitoring of the systems
decides the "faith" of the running applications, deciding if a
redeployment or a tuning is needed for each application to
meet its user-defined goal. A user has to specify the query
she wants to perform over the data and an optimization goal,
weighing three parameters, i.e., throughput, latency, and
cost. Before the deployment to the streaming framework,
Moira applies a cost-based estimation of the given analysis,
to optimize its deployment and to get closer to the user goal.
Then, after the submission of the application to the streaming
framework, the dynamic cost estimator monitors multiple

cluster metrics and other data taken from the incoming data
and, at every defined interval, it triggers a new cost estima-
tion aware of these parameters. If the built topology does
not fit the user requirements and a new and better topology
can be deployed, then the running application is stopped and
the new topology is actually used.

In this paper, we focus on the optimal solution for the user
goal, given the characteristics of the incoming data and the
analysis that the user has to perform. Hence, we provide the
following contributions:

• To our knowledge, this is the first paper that takes into
consideration the user goal for an application for a dy-
namic resource allocation in a streaming environment.

• We provide a formal definition of the optimal solution
for the user goal, knowing information about the in-
coming data, cluster usage metrics, and being aware of
the user query. This is also presented in a framework
built on top of Apache Flink that enables this kind of
analysis.

• We conduct a series of experiments to compare our
method with a single static estimation and without
any cost estimation, presenting the advantages and
the issues for each case.

The remainder of this paper is organized as follows. We
present a use case scenario to allow the readers to understand
the needs for such a system in Section 2. Then, a literature
overview of the related work is conducted in Section 3. Sec-
tion 4 exposes the formal definition of the problem we are
dealing with, and in Section 5 we show the insights of our so-
lution. Section 6 presents the experiments performed and the
comparison with and without our framework, and with only
a cost-based estimation at the deployment of the application.
Then, we conclude with some final remarks in Section 7.

2 MOTIVATING EXAMPLE
A startup has just published a new mobile phone game on
the market. They developed a logging system in their mobile
application to receive feedback from the users while they are
playing their game. The logs have several objectives, such as
debugging purpose or reporting, so each kind of log needs
a specific management. Moreover, the incoming data to the
logging system will change its input rate through time, since
people play their game but only for a small amount of time.
Even more, if we consider that the game has been purchased
more in Europe than in the rest of the world, for sure we will
have fluctuating data, with some peaks, for example, in the
European evening time and some drops during the European
nights. So, in this context, the startup wants to perform
some kind of analysis on the logs, to improve the game
experience of their customer. This analysis is translated into
a DAG (Directed Acyclic Graph), where each node represents

Moira: A Goal-Oriented Dynamic Cost Estimation BIRTE ’18, August 27, 2018, Rio de Janeiro, Brazil

an operation of the analysis (e.g., a map/reduce operation),
while the edges represent the data flow path. Intuitively,
each node will be deployed on a slot placed in a machine of
the cluster. A machine has multiple slots available for the
nodes of the DAG. However, this DAG is not deployed as it
is on the cluster, but it can be optimized in different ways
to improve the performance of the analytics. For example,
multiple nodes (operations) of the DAG can be performed in
the same slot, avoiding the cost of moving the results of a
previous operator to the next operator through the cluster
slots that can even be on different machines, or one node
can be deployed multiple times to parallelize the operation
and thus to improve the performance of that operation.
Let’s consider the following analytic described by the

startup: get as input the logs, perform a word count of the
error code, filter the elements that appear a fewer number of
times than a predefined threshold, try to replicate the error
with a custom code taken as a black-box, and then save the
results into a text file. The analytics will be translated into
the DAG pictured in Figure 1.

Figure 1: DAG example for a use case application

So, with such an analysis, other available systems would
optimize the resource allocation or the latency. In our system,
it is the user that specifies the optimization goal for the given
query. Then, the system will start from it using the gathered
information about the incoming data and the cluster usage
to deploy the topology that fits better the user’s goal. For
example, if the user wants to improve latency, one choice
can be to chain together the whole process, parallelizing the
operators as much as possible. However, if it may be useful
while the data is at its peak, when the income rate is on a
drop, it becomes not worthy to have the whole cluster filled.
Hence, it will be worthy to have a system that takes care of
it and decreases the parallelism, which is our aim, even if the
goal is to have low latency, since even with fewer resources
the goal is still fulfilled.
On the other hand, if the custom error handling policy

is a slow operation that needs an amount of resources, for
optimizing latency then it will be better to chain the first four
nodes and have a bigger parallelism for the error handling
task.
Hence, as it is shown, each query has to be handled in

different ways given the goal defined by the user. Moreover,
since in such a context the data incoming rate might vary

through time, a dynamic estimation is needed to improve
performance and resource allocation, even better if it follows
the user needs and allow the user to fulfill her goal.

3 RELATEDWORK
Streaming analysis has been a trending topic over the last
years and many frameworks for such applications have been
proposed. Among them, themost known areApache Flink [1],
the streaming library of Apache Spark [4], Apache Storm [5],
and Apache Heron [2]. Given the number of available tools,
one of the main questions on the hype recently is about
identifying the best available streaming system. To answer
this question, several works compare these frameworks to
find the most reliable and fastest system available on the
market [8, 16]. Moreover, a positive aspect of these systems
is that they allow the deployment of the applications over a
cluster of machines, enabling scalable prone analysis. Hence,
in this context, resource allocation and how to deploy an
application over multiple machines are becoming even more
important.
The first investigation track leverages on running mul-

tiple applications in the same cloud system, where the re-
sources are limited and the applications have to compete
with each other to assure them. From this group, YARN [18],
Mesos [13], and Abacus [19] are some notable examples.
The basic idea behind these systems is that each application
knows the needed resources and the framework takes care
of its scheduling and deployment among the nodes of the
cluster. However, these systems do not provide an analysis
bounded to the application resource allocation during its
whole cycle.

There are many works on this side, and among them,
Dhalion is a self-regulating system built on top of Apache
Heron [9]. It is a system implemented through a set of Symp-
tom Detectors that check the status of both the incoming
stream of data and the allocated resources. Then, the symp-
toms are used by the so-called Diagnosers, which aim at
diagnosing problems from those detected symptoms, e.g.,
back pressure and over-provisioning. Finally, the performed
diagnoses are examined by the Resolvers that take the ap-
propriate decision, e.g., allocate more resources or change
the location of a task to avoid back pressure. This analysis
continues through all the application running period.
An older approach for Hadoop Map/Reduce applications

is Starfish [12]. It proposes a self-tuning system that handles
the Hadoop configuration without the need for the users to
tune it by hand. This automatic tuning can be performed
at different granularity levels, from job-level tuning (fine-
grained) to workflow-level (coarse-grained) tuning, to ful-
fill different needs. In addition, the framework presents a

BIRTE ’18, August 27, 2018, Rio de Janeiro, Brazil D. Foroni et al.

language to specify a workload (i.e., a sequence of work-
flows) along with some metadata, which is added to those
automatically gathered from the system in order to improve
the configuration performance. Furthermore, this language
system works as a recommendation engine for configuring
Hadoop applications.
Elastic Allocator is another adaptive system that gathers

information about the cluster both from what concerns the
CPU usage and the bandwidth usage [11]. It is claimed to
be the first system to use the latter metric for this kind of
analysis. The framework is built on top of Apache Storm
and it aims at solving the problem of assigning the task
operators to the appropriate node of the cluster to improve
the performance of the application. It takes the decision,
knowing the collected informationmetrics, through a greedy-
based algorithm.

Another work that performs dynamic resource provision-
ing is Flower (Flow Elasticity Manager) [14, 15]. The frame-
work collects information from multiple monitoring systems
of the cluster at different layers, e.g., data ingestion, analytics,
and storage, that are later fit into the control system. This
module takes as input the history of the sensor values, which
are the measured values and the desired values of each mon-
itored element at a specific time, and dynamically updates
the value of the actuator to reach the desired results.
A different approach models the problem as a Markov

Decision Process (MDP) [17]. However, usual cases do not
have a full knowledge of the system, so the approach exploits
a reinforcement learning algorithm to overcome this problem.
At each iteration the model checks for each task operator
of the application if it has to increase its number of parallel
running instances, decrease it, or if the actual value suits the
requirements. In addition, it provides an analysis on both a
centralized approach, where the system runs in the master
node and coordinates all the others, and a decentralized
approach, where each node is aware only of the tasks running
on it and the parallelism can be increased only on the node’s
available resources.

DRS (Dynamic Resource Scheduling) is yet another appli-
cation for dynamic rescheduling the resources assigned to an
application [10]. It comprises two layers, the DRS layer, and
the CSP layer. The former contains the monitoring system,
which runs the resource optimizer algorithm and performs
the actual resource allocation, while the latter is just a frame-
work deployed on top of the streaming processing system.
Hence, the CSP (Cloud-based Streaming Processing) layer
acts as a middleware to allow the communication between
the DRS layer and the streaming system adopted. It proposes
a solution for allocating the right amount of resources and as-
signing them to the right cluster nodes under the constraint
of a low-latency application.

4 PROBLEM STATEMENT
We assume the existence of a countable set of records R
and a countable ordered set of timestamps T . A sequence of
records, each with an assigned timestamp, is referred as a
data stream or simply a stream. Let S represent the set of all
possible streams.We denote as τ (r) the timestamp of a record
r in a stream. The rate of a stream s ∈ S, at a time t , and for a
temporal windoww , is the number | {r | r ∈R ∧ (t−w)≤τ (r)≤t } |

w .
Note that the rate of a stream may be different over time.
The records of one or more streams can be processed to

produce new objects. There is a number of primitive pro-
cessing tasks that can be performed on streams. These tasks
are referred to as operators. The output of an operator is a
stream itself.

Definition 4.1 (Operator). A stream operator is a function
o : P(S) → S. The set of all possible operators is denoted
as O.

Since the output of an operator is a stream, it can be used
as input to another operator. In this way, operators can be
combined to formmore complex processing tasks. Such tasks
are referred to as queries.
Definition 4.2 (Query). A k-input query is a tuple q= ⟨•,

N , E, I , ne ⟩, where N ⊂ O and is finite, • is a partial order
over N , ne∈N , I is an assignment [1..k]→N and E⊆N×N
such that ∀⟨n1,n2⟩∈E : •(n1)≤•(n2).
A query is actually a function that accepts as input k

streams, and produces a single output stream. The output
stream is the output of the operator ne . The assignment I
assigns each of the k input streams to one or more operators
in N . Intuitively, a query can be seen as a directed acyclic
graph that has a node for every operator in N , and an edge
for every entry in E. The node ne is referred to as the output
node, and every node that has been assigned at least one
input in I , as an input node. Input nodes are annotated also
with the number of the input stream they have been assigned.
For instance, if the assignment I contains the assignment
⟨3, n⟩, it means that the third input stream is among the
inputs of the operator n. Input nodes are annotated with the
numbers of the inputs that they have been assigned to them.
In what follows, when we refer to a query, we will refer to
its equivalent graph representation.

Example 4.3. Figure 2 illustrates the graph representation
of a query that takes as input 3 input streams. The input
nodes are those without incoming edges and their annota-
tions on the left of the identifiers indicate which of the three
input streams s1, s2, and s3 they use as input. Although not
shown in the graph, note that an input node can have more
than one input streams. Node 10 is the output node, i.e., the
node of the output stream so , which is considered the output
of the query.

Moira: A Goal-Oriented Dynamic Cost Estimation BIRTE ’18, August 27, 2018, Rio de Janeiro, Brazil

Figure 2: Query graph

Since a query is a combination of individual operators, it
is possible that different operators are executed on different
machines, such that the data produced by one operator is
immediately fed to the next operator that can start processing
it. Of course, if two consecutive operators are in different
machines, then, some cost needs to be paid to transfer data
from one to another. If that cost is high, then it may be better
to restrict these operators, by bounding them together. This
is known as chain.

Definition 4.4 (Chain). Given a query ⟨•, N , E, I , ne ⟩, a
chain in a sequence of operators n1, n2, . . . , nk , such that for
each i=1. . .k−1:

• ⟨ni ,ni+1⟩∈E
• �⟨ni , x⟩∈E such that x,ni+1,
• �⟨x,ni+1⟩∈E such that x,ni , and
• �⟨s,ni+1⟩∈I

Intuitively, a sequence of two or more operations can form
a chain only if the succeeding operator has only one input
and it comes from the previous the previous one, apart from
the first operator of the chain that can have more than one
inputs, and the last element, whose output is not a member
of the chain.

Example 4.5. In the query presented in Example 4.3, the
nodes 7, 8 and 9 can form a chain, since they are consecutive
and the only edge that has one endpoint among them is one
incoming from 7 and one outgoing to 9. The nodes 3, 6, and
10 cannot form a chain because 6 has an incoming edge that
originates from node 5 that is not part of the group.

The nodes of a chain can be collapsed to one node that has
as input the input of the first node, and as output the output
of the last node. In other words, a chain can be treated as
a single operator, and the resulted graph is again a query
graph.

The task of an operator can be replicated across different
machines such that the different replicas are processing dif-
ferent parts of the records of the input stream. This process
is known as parallelization. The parallel versions of the oper-
ator are replacing the original operator they parallelize and
are called replicas. All the replicas of an operator have the
same input as the original operator and the same output.

Definition 4.6 (Parallelization). A k-parallelization of an
operator n∈N of a query ⟨•, N , E, I , ne ⟩, is a set of replicas
n1, n2, . . . , nk of the operator n, such that a new query can
be created of the form ⟨•, N ′, E ′, I ′, ne ⟩ for which:
N ′ = (N - {n}) ∪ {n1, n2, . . . , nk },
E ′= {⟨n′, x⟩ | n′∈{n1, . . ., nk } ∧ ⟨n, x⟩∈E }

∪ {⟨x ,n′⟩ | n′∈{n1, . . . , nk } ∧ ⟨x , n⟩∈E }

∪ {⟨x ,y⟩ | ⟨x , y⟩∈E ∧ y,n ∧ x,n},
I ′ = {⟨s ,x⟩ | ⟨s , x⟩∈I ∧ x,n }

∪ {⟨s ,n′⟩ | ⟨s , n⟩∈I ∧ n′∈{n1, . . . , nk }

There are different ways to execute a query depending
on what operators are parallelized and what are executed
in sequence on the same machine. Each different way of
doing this has a different cost. Parallel executions can ex-
ploit different cores at the same time, but increase the data
communication cost. Execution on the same machine, on
the other hand, is increasing the time since the operators
are executed in sequence, but saves communication cost. To
model the way a query can be executed, we define the no-
tion of an execution plan. Intuitively, the execution plan is a
specification of what operators should be chained and what
should be parallelized.
Given a query ⟨•, N , E, I , ne ⟩, we consider a number of

equivalent classes, as many as the number operators, i.e., |N |.
Each equivalent class is modeled by its representative. By
default we assume that every operator belongs to a different
equivalent class, which means that each operator is also
the representative of the class to which it belongs. Deciding
that two or more operators need to be executed on the same
machine, can bemodeled by simply putting the two operators
in the same equivalent class. Merging two equivalent classes
is as simple as making the members of the second class have
as a representative the one from the first class. This means
that we can model the chains by a vector that consists of as
many elements as the number of operators in the query, and
each element indicates the representative of the equivalent
class in which the respective operator belongs.
In a similar fashion we can model the parallelization by

indicating the degree of replications that we need to achieve
for each operator we need to parallelize. This means that we
can also represent the parallelization as a vector of integers,
one for each operator. Note that parallelization is done only
for operators that are not chained, which means that for such
a vector to be valid, an element can have a value more than
1 only if the respective operator is the only member of its
equivalent class (which intuitively translates to not being
part of a chain).

The combination of the two vectors, one for the chains and
one for the parallelization, is what we refer to as a execution
plan.

BIRTE ’18, August 27, 2018, Rio de Janeiro, Brazil D. Foroni et al.

Definition 4.7 (Execution Plan). Given a query ⟨•, N , E,
I , ne ⟩, an execution plan is a tuple ⟨C, P⟩, whereC is a vector
of |N | elements, each one with a value from N , and P is a
vector of positive integers.

An execution plan ⟨C, P⟩ is said to be valid if for every
i=1..|P | with P[i]>1, it holds that |C[i]|=1. By abuse of nota-
tion, we useC[i] to denote the equivalent class of the operator
i-th operator, and the |C[i]| to denote the cardinality of that
equivalent class.

The performance of the execution of a query at any given
time depends in the data that arrives into its input stream
and the execution plan that has been followed. Our goal is
to be able to decide at any given moment, given the input
stream data, what the best execution plan is.

[Problem Statement]:Given a query ⟨•,N , E, I ,ne ⟩, and
a series of tuples of the form ⟨S, p, c⟩, where S is a set of
input streams, p is an execution plan and c is a cost of that
plan, we would like to find the best execution plan when the
set of input streams is S ′.

5 MOIRA ARCHITECTURE

Figure 3: Moira framework
In this section, we present Moira, the framework we pro-

pose as a solution to the problem of dynamically applying
the best execution plan to the user queries. Moira is a sys-
tem built, for our scope, on top of Apache Flink, but it can
be adapted to any other available streaming framework. As
shown in Figure 3, it is composed of three main components
and it strictly interacts with Apache Flink. The entry point
of the system is the cost-based optimizer component, which
takes as input the user query over the available data and
her goal. Note that our framework is goal-centered since
each query has to be optimized differently according to the
user needs. This component finds the execution plan that fits
mostly the given user goal and sends the built application to
Apache Flink in order to run it. The streaming framework
will then deploy the application through the cluster machine.

Meanwhile, the monitoring system is actually polling the
system to gather information about the cluster usage, the
characteristics of the data, e.g., the income rate, and the
status of the running applications. This information will be
then sent to the dynamic cost-estimator that will build the
features to use in the cost estimation that will check again if
the already deployed topology is the best one or if the newly
gathered information will allow a better execution plan to be
used. In the following, we present each component in details.

5.1 Cost-based Optimizer
The purpose of the cost-based optimizer component is to
derive the optimal topology for executing a query based on
available resources and an optimization goal that was defined
together with the query by the DSP application programmer.
The optimization goal describes how resources should

be allocated by the cost-based optimizer. It is defined as a
weighted triple of three conflicting optimization areas: cost,
latency, and throughput, i.e. ⟨Wcost ,Wlatency ,Wthrouдhput ⟩.
Here the term cost refers to the economical allocation of re-
sources, allowing to execute the query using fewer slots and
consequently fewer machines in a cluster. This allows either
to limit expenses for compute nodes, e.g. if deployed in public
cloud, or to reserve resources for deploying other topologies
in parallel on a cluster with limited resources. The latency
goal quantifies the importance of generating output with a
small delay after an event is entering the topology through
an input stream, while throughput emphasizes a topology’s
ability to absorb high input rates. The optimization goal gives
the DSP application programmer the possibility to manage
resource allocation of a high level of abstraction and at the
same time to establish guarantees for throughput and latency.
Note that the goal remains constant for the duration of the
query execution.
In addition, and regardless of the actual balance of the

optimization goal, the cost-based optimizer always aims to
prevent resource shortage (processing stalls, out-of-memory)
and back-pressure in the processing pipelines, allowing for
the unobstructed and continuous execution of the stream
topology.
For accomplishing these tasks, the cost-based optimizer

determines the resource requirements of every stream opera-
tor, based on the operator’s algorithm and configuration, and
on the data characteristics of the operator’s input streams.
Cost estimation assumes correlation of data characteristics,
i.e. of the characteristics of the flow of stream events, where
a finite set of events from the input streams generates a finite
set of output events. Formally, the data characteristics of a
data stream s are composed of an event rate rs and a tem-
poral window sizews . So, the cost function of any operator
n∈N with i input streams s1, s2, . . . , si a parallelism of p, is
calculated as

Costn({rsi ,wsi },p) = (cpuw , sizew , rout ,wout)

where cpuw denotes the computation complexity of n for
handling one temporal window, and sizew corresponds to
the storage complexity that n requires internally to manage
the state of that window. Computation complexity, storage
complexity, and output rate serve as indicators for resource
requirements, as well as for latency and throughout estima-
tion.

Moira: A Goal-Oriented Dynamic Cost Estimation BIRTE ’18, August 27, 2018, Rio de Janeiro, Brazil

With this estimation, the optimizer can associate the oper-
ators with resources, by (1) aggregating operators into chains,
which are deployed into individual slots for execution, and
by (2) setting the chain parallelism, such that replica of a
particular chain are executed in separate slots.
With this approach, it is possible to propagate the costs

bottom-up through the DAG that represents the query. The
data characteristics of data sources (DAG leaves) are deter-
mined before cost estimation can start. Note that data char-
acteristics of data sources may vary over time. Ideally, the
data source characteristics are known upfront, e.g. consult-
ing statistics from previous accesses. Alternatively, sampling
is applied to gauge the characteristics of the current data
flow. Finally, the API allows the DSP programmer to manu-
ally set/override the data characteristics of individual data
sources.
The basic strategy of optimization is the following: Start

at the DAG leaves and create chains initially containing only
a data source. Eventually each chain C will be allocated to
a slot, an execution container, which is a unit for resource
management, having a single CPU core and a fixed amount
of memory, hence any chain’s resource requirements may
not exceed the resource capacity offered by its allocated
slot. Recursively try to extend the current chain across the
subsequent operator n, by checking the following conditions.

(1) n is chainable
(2) n supports the parallelism of C
(3) Chaining creates no back-pressure
(4) Chaining creates no resource shortage (e.g. CPU /mem-

ory of execution container)
(5) Chaining complies latency constraint of optimization

goal
(6) Chaining complies throughput constraint of optimiza-

tion goal

As a consequence, new chains are started whenever a con-
flicting condition is detected. If all conditions apply, the chain
is extended, therebyminimizing the total number of chains in
a topology, and ultimately controlling the cost of execution.

The amortized complexity of cost-based stream optimiza-
tion isO(|N |loд |N |), as it corresponds to one traversal of the
DAG with eventual backtracking for adapting chain paral-
lelism.
As mentioned before, the characteristics of data sources

are not constant while stream topologies tend to be deployed
for a long period of time. In the following we describe how
monitoring continuously re-validates the topology against
the optimization goals and re-deploys the topology if signifi-
cant changes are detected.

5.2 Monitoring System
Apache Flink exposes by default a number of metrics on
the cluster usage, both for the master node (Job Manager)
and for the slaves (Task Manager). It is possible to receive
these metrics through JMX, and we store all the available
metrics in Apache Lucene [3], which allows the user to per-
form range queries, which we use for getting the history of
the needed metrics. We take into consideration the metrics
related to the amount of resources used (e.g., RAM, CPU),
and we monitor possible problems (e.g., back-pressure). But
among all, the most important for our algorithm is the knowl-
edge of the input and output rate, in both forms of size and
number of events. The collected metrics are then forwarded
to the feature extractor, which processes them to provide
the cost-estimation the right parameter to actually check the
redeployment of the topology.

5.3 Incremental learning for Dynamic
Cost Estimation

Our solution for dynamic cost estimation unfolds as a learn-
ing problem.We formulate it as such to offer a generic, robust
and flexible approach suitable for such massive distributed
systems.

Dynamic cost estimation is an incremental process. Start-
ing from an initial topology our system employs a machine
learning algorithm that uses recent history to build a model
of the data (i.e. query specific data: input rate, window size;
goal: cost, latency, throughput; topology) and its evolution to
estimate predictions. Such a model is updated for each new
query, such that the model evolves with the data it represents
and is able to accurately trigger a topology reconfiguration.
Moreover, this kind of model needs to capture and accom-
modate the changes in the process generating the data (e.g.
learning the correlation among input rate and the topology)
to either generate a prediction conditioned on history or to
trigger a full model retraining. Of course, this implies either
the use of incremental algorithms or the periodic retrain-
ing with batch algorithms (expensive in terms of time and
resource consumption - critical in such a dynamic cost esti-
mation problem). As a first implemented method, we take
care of the history of the input rate for the operator, we
perform the average, and we send it to the cost-estimation
function for building the new topology.

In addition, we propose a new approach using incremental
learning, which is a learning paradigm where computations
adjust to any external change to their data automatically.
As is it the case in online machine learning, applications
need to respond to incremental modifications to data (i.e.
update the topology based on the desired cost, throughput
and latency). Being incremental, such modifications often
require incremental modifications to the output, making

BIRTE ’18, August 27, 2018, Rio de Janeiro, Brazil D. Foroni et al.

it possible to respond to them asymptotically faster than
recomputing from scratch.
In such cases, taking advantage of incremental behavior,

dramatically improves performance, especially as the system
evolves in time for subsequent queries.
In order to decide on a topology change, the Feature Ex-

tractor component receives as input the query and the stream
parameters (i.e. input rate and window size), the goal (i.e. the
desired cost, latency, and throughput) and the measured met-
rics (i.e. usage, measured input rate etc.) and when needed
triggers a topology change through to the cost-estimation
function. In order to make the solution flexible and adap-
tive, we extend from a static policy switch to an incremental
learning approach. Such an approach assumes learning the
dependencies among the input and output variables of the
cost-estimation function, in a pairwise fashion to exploit all
the underlying correlations among the measured metrics of
the current topology and the current query parameters, for
example.
Learning such pairwise functional dependencies among

the variables is basically a regression problem. Various meth-
ods for both univariate and multivariate regression have
been developed, yet it is not trivial how to extend them to
cope with the evolving nature of the problem. In other words,
there is not a straightforward approach to incremental re-
gression.
In order to explore the underlying relations among the

variables in our problem, we started by exploring a linear
regression problem, employing a simple incremental Linear
Least Squares (LLS) model (described in Figure 4). The linear
least squares fitting technique is the simplest and most com-
monly applied for linear regression and provides a solution
to the problem of finding the best fitting straight line through
a set of points. It tries to minimize the sum squares of the
deviations of a set of n data points:

Figure 4: Linear Least Squares (LLS) model example

In our case, for example, for the input rate to throughput
dependency we can incrementally calculate:

• mean: rn(s) = rn−1(s) + 1
n ((s) − rn−1(s), where n is the

window size, so rn−1(s) is the mean over n− 1 readings
(without the current reading), and rn(s) is the mean of
window with the current read

• variance (2nd moment):
m2,n =m2,n−1 + (rn(s) − rn−1(s))(rn(s) − rn(s))

• covariance:
sr (s)T ,n =

n−2
n−1sr (s)T ,n−q +

1
n (rn(s) − rn−1(s))(Tn −Tn−1)

In general, the nonlinear regression problem assumes a loss
function L2 =

∑
[T − f (r (s), β1, . . . , βn)]

2. In particular, for
the linear case we have:

L2 =
∑

[T − f (r (s)β2 + β1)]
2

We learn incrementally the coefficients:

β1 = T − β2r (s) and β2 =
sr (s)T ,n

m2
2,n

Such a model uses incrementally calculated descriptive
statistics and is able to cope with the dynamic updates of
topology in our solution. At the moment, the model is con-
sidering linear functional relations among the variables, for
example, window size and topology equivalence class. For
more complex, nonlinear dependencies such a model will
fail to capture the underlying relations. In order to cope
with such a problem, the regression mechanism could be
extended to incrementally approximate also the nonlinearity
dependencies among the variables. For example, we are plan-
ning to use an incremental Support Vector Machine (SVM).
Support vector machines (SVMs) are supervised learning
methods used for classification, regression and outliers de-
tection. Among the advantages of support vector machines
are: the effective in high dimensional spaces, such as the
dynamic cost estimation for topology reconfiguration; the
effectiveness in cases where number of dimensions is greater
than the number of samples; the use of a subset of training
points in the decision function (i.e. support vectors), so it is
also memory efficient and suitable for dynamic cost estima-
tion, and can learn highly nonlinear dependencies by using
nonlinear kernels to encode the input data.

Given training vectors ri (s) ∈ R, i = 1, . . . ,n, and a vector
T ∈ R, SVM solves the following optimal problem:

min
w ,b ,ζ ,ζ ∗

1
2
wTw + c

n∑
i=1

(ζi + ζ
∗
i)

subject to Ti −wTϕ(xi) − b ≤ ϵ + ζi ,
wTϕ(ri (s)) + b −Ti ≤ ϵ + ζ ∗i ,

ζi , ζ
∗
i ≥ 0, i = 1, . . . ,n

where ζi , ζ ∗i are the slack variables and ϕ(r (s)) is the kernel.
Here training vectors are implicitly mapped into a higher
dimensional space by the function ϕ.

Moira: A Goal-Oriented Dynamic Cost Estimation BIRTE ’18, August 27, 2018, Rio de Janeiro, Brazil

Training a support vector machine (SVM) requires solving
a quadratic programming (QP) problem in a number of coef-
ficients equal to the number of training examples. For very
large datasets, standard numeric techniques for QP become
infeasible, this is why an incremental approach is definitely
an approach to follow. As an extension to our linear regres-
sor using LLS, we will propose an on-line, incremental SVM
alternative, that formulates the (exact) solution for n+1 train-
ing data in terms of that for n data and the current data point
(i.e. measurement). The incremental procedure would also be
reversible and allow “unlearning” of each training sample to
remove the impact it had on the dynamic estimation of the
functional relations in the topology modifications decision.

The ultimate goal of the incremental learning component
of our system is to learn the relevant pair of variables which
have a strong contribution to the decision to change the
topology. This assumes learning pairwise functions among
them while making sure that consensus is reached among
any variable. Such an approach assumes building a network
(i.e. a graph representation) in which each vertex is a variable
(i.e. input rate, window size, topology parallelism, topology
equivalence class entries etc.) and connections among ver-
tices (i.e. edges) represent the functional relationship con-
necting those variables, as learned by LLS and SVM.
Such a method would use an entropy reduction tech-

nique [7] to actually select which variable pairs are the most
informative and have a strong correlation. The system would
allow to actually have a consistent state in the estimation
process, i.e. all relations would be satisfied and the topology
adjusted accordingly. A sample depiction of the system is
provided in Figure 5.

Figure 5: Entropy reduction technique for correlation
learning

This system is composed of a pipeline which feeds time-
series sensory input; compute statistics for individual and
pairs of sensors (entropy and mutual information); computes
statistical distance and conditional entropies to extract statis-
tical relatedness; creates a connectivity array using entropy
reduction (minimization), as shown in the left panel. In the
right panel, the underlying functionality behind the correla-
tion learning is depicted.
Such an approach will enable the dynamic cost estima-

tor to learn which of the available variables are correlated,
learn the pairwise relations among them and then use these
learned relations to take a decision on the topology update
policy based on the consensus of the learned functions.

6 EXPERIMENTS
We present here a set of experiments to validate our frame-
work for a dynamic cost estimation of the resources given the
user goal. We show the results with respect to the static cost
estimation and to Apache Flink by itself, describing the ad-
vantages and disadvantages of our system. We analyze both
latency and throughput, which are the most used metrics to
check the features of a system.
[System Description] The experiments were run over a
cluster of 4 machines running RedHat 6.5. All the machines
were featured with 126 GB of main memory and 24 cores.
We perform our experiments with the standard version of
Apache Flink 1.4.2, and we apply our framework on top of it.
base is the original 1.4.2 version, while in static is enabled the
static estimation at the deployment of the application, and
dynamic describes the performance of the enabled dynamic
goal-oriented cost-based estimation. If static performs a stan-
dard starting estimation, with dynamic is running another
application which actually takes care of the rescheduling
of the jobs. We perform our evaluation with the TPC-H
benchmark [6], creating the data through the data gener-
ator and applying some of the queries they propose. We
tested our framework with a constant input rate of 4000
elements/second for 2 hours.

0 20 40 60 80 100 120

time (min)

0

500

1000

1500

2000

la
te

n
cy

(m
s)

base (avg 1196.49)

static (avg 1119.26)

dynamic (avg 965.22)

Figure 6: Latency evaluation for TPC-H query

BIRTE ’18, August 27, 2018, Rio de Janeiro, Brazil D. Foroni et al.

0 20 40 60 80 100 120

time (min)

0

500

1000

1500

2000

2500

th
ro

u
gh

p
u

t
(#

tu
p

le
s)

base (avg 253.04)

static (avg 253.12)

dynamic (avg 261.32)

Figure 7: Throughput evaluation for TPC-H query
Figure 6 and Figure 7 show the performance of our frame-

work with the TPC-H query number 3. The former presents
an analysis on the latency, while the latter on the through-
put of the query. For what concerns the dynamic estimation,
we optimized the latency for the first plot, while for the
throughput figure, the optimization goal was the throughput.
For the latency chart, first of all, we see that the latency is
high, and it is still increasing. That is because the number
of elements sent to Flink was high for such a query, and its
execution was computationally intensive. But this is not a
problem caused by our implementation since even the base
version reports the same behavior. We can see that the static
estimation is giving a small advantage w.r.t. the base ver-
sion, which proves that the cost function we implemented
is a good starting point. Moreover, the dynamic estimation
shows better performance after 45 minutes, when the job
was rescheduled. We were using a constant input rate, so the
job was rescheduled only once. But, with a fluctuating input
rate, the improvement would have been even bigger, since
the job resources would have followed the input rate.
For what concerns the throughput, we see that both the

static estimation almost follows the base version, which is
stable during all the execution, but with a slightly higher the
number of output tuples per second. The dynamic estimation
shows the same behavior of the static up to the rescheduling
(after 10 minutes). Then, it presents a peak, due to the new
configuration that allows it to output the queued elements.
After that, it maintains a constantly higher throughput for
the remaining execution time.

7 CONCLUSIONS
In this work, we considered the problem of dynamically allo-
cating the resources for a streaming application in a cluster
environment. The novelty of this work is that the amount
of allocated resources is bound to a goal defined by the user,
which consists of a value for cost, latency, and throughput.
Moira, the framework we propose, is a system built on top of
Apache Flink, and from an initial static estimation of the user
query which deploys the first execution plan, it dynamically
accesses the metrics exposed by Flink and the characteristics

of the incoming data, and then it will use them as features
to reach the user goal. If the new cost-estimation suggests
the deployment of a new plan, Moira actually reschedules
the job with the new topology. We propose an insight of
our solution and then we discuss deeply the idea we have to
improve the system as a future work.
REFERENCES
[1] Apache Flink. http://flink.apache.org.
[2] Apache Heron. http://heronstreaming.io.
[3] Apache Lucene. http://lucene.apache.org.
[4] Apache Spark. http://spark.apache.org/streaming/.
[5] Apache Storm. http://storm.apache.org.
[6] TPC-H. http://www.tpc.org/tpch/.
[7] C. Axenie, C. Richter, and J. Conradt. A self-synthesis approach

to perceptual learning for multisensory fusion in robotics. Sensors,
16(10):1751, 2016.

[8] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh,
Z. Liu, K. Nusbaum, K. Patil, B. Peng, and P. Poulosky. Benchmarking
streaming computation engines: Storm, flink and spark streaming. In
2016 IEEE IPDPS Workshops 2016, Chicago, IL, USA, May 23-27, 2016,
pages 1789–1792, 2016.

[9] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy. Dhalion:
Self-regulating stream processing in heron. PVLDB, 10(12):1825–1836,
2017.

[10] T. Z. J. Fu, J. Ding, R. T. B. Ma, M. Winslett, Y. Yang, and Z. Zhang.
DRS: dynamic resource scheduling for real-time analytics over fast
streams. In 35th IEEE ICDCS 2015, Columbus, OH, USA, June 29 - July
2, 2015, pages 411–420, 2015.

[11] Z. Han, R. Chu, H. Mi, and H. Wang. Elastic allocator: An adaptive task
scheduler for streaming query in the cloud. In 8th IEEE International
Symposium on Service Oriented System Engineering, SOSE 2014, Oxford,
United Kingdom, April 7-11, 2014, pages 284–289, 2014.

[12] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu. Starfish: A self-tuning system for big data analytics. In CIDR
2011, Asilomar, CA, USA, January 9-12, 2011, pages 261–272, 2011.

[13] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica. Mesos: A platform for fine-grained
resource sharing in the data center. In Proceedings of the 8th USENIX
NSDI 2011, Boston, MA, USA, March 30 - April 1, 2011, 2011.

[14] A. Khoshkbarforoushha, A. Khosravian, and R. Ranjan. Elasticity
management of streaming data analytics flows on clouds. J. Comput.
Syst. Sci., 89:24–40, 2017.

[15] A. Khoshkbarforoushha, R. Ranjan, Q. Wang, and C. Friedrich. Flower:
A data analytics flow elasticity manager. PVLDB, 10(12):1893–1896,
2017.

[16] S. Perera, A. Perera, and K. Hakimzadeh. Reproducible experiments
for comparing apache flink and apache spark on public clouds. CoRR,
abs/1610.04493, 2016.

[17] G. R. Russo. Towards decentralized auto-scaling policies for data
stream processing applications. In Proceedings of the 10th Central Eu-
ropean Workshop on Services and their Composition, Dresden, Germany,
February 8-9, 2018., pages 47–54, 2018.

[18] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler. Apache hadoop
YARN: yet another resource negotiator. In ACM SOCC ’13, Santa Clara,
CA, USA, October 1-3, 2013, pages 5:1–5:16, 2013.

[19] Z. Zhang, R. T. B. Ma, J. Ding, and Y. Yang. ABACUS: an auction-based
approach to cloud service differentiation. In 2013 IEEE IC2E 2013, San
Francisco, CA, USA, March 25-27, 2013, pages 292–301, 2013.

http://flink.apache.org
http://heronstreaming.io
http://lucene.apache.org
http://spark.apache.org/streaming/
http://storm.apache.org
http://www.tpc.org/tpch/

	Abstract
	1 Introduction
	2 Motivating Example
	3 Related Work
	4 Problem Statement
	5 Moira Architecture
	5.1 Cost-based Optimizer
	5.2 Monitoring System
	5.3 Incremental learning for Dynamic Cost Estimation

	6 Experiments
	7 Conclusions
	References

