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Abstract. Traffic congestion poses serious challenges to urban infras-
tructures through the unpredictable dynamical loading of their vehic-
ular arteries. Despite the advances in traffic light control systems, the
problem of optimal traffic signal timing is still resistant to straightfor-
ward solutions. Fundamentally nonlinear, traffic flows exhibit both lo-
cally periodic dynamics and globally coupled correlations under deep un-
certainty. This paper introduces Oscillator-Based modelling and control
using Efficient neural Learning for Intelligent road traffic Signal Calcu-
lation (OBELISC), an end-to-end system capable of modelling the cyclic
dynamics of traffic flow and robustly compensate for uncertainty while
still keeping the system feasible for real-world deployments. To achieve
this goal, the system employs an efficient representation of the traffic
flows and their dynamics in populations of spiking neural networks. Such
a computation and learning framework enables OBELISC to model and
control the complex dynamics of traffic flows in order to dynamically
adapt the green light phase. In order to emphasize the advantages of
the proposed system, an extensive experimental evaluation on real-world
data completes the study.
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1 Introduction

Road traffic congestion poses serious challenges to urban infrastructures and im-
pacts both the social and the economic lives of people. Such fundamental reason
motivated large amounts of research and systems developed to analyze, model,
and control road traffic towards avoiding congestion [17]. Looking at actual tech-
nology instantiations, such as SCOOT[9], SCATS[12], PRODYN [7], or LISA [6],
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adaptive traffic signal control systems detect vehicles as they approach a signal-
ized cross well in advance of the stop line. This detection, from multiple crosses,
is subsequently fed into a central system, which models the flow of traffic in
the area. The traffic model is then used to adapt the phasing of the traffic light
signals in accordance with the flow of traffic, thus minimizing unnecessary green
phases and allowing the traffic to flow most efficiently. Despite the increasing
complexity of such end-to-end solutions, research on optimization is still going
on. Basically, one of the differentiating aspects among the existing systems is
the traffic model they use, in other words, those aspects of the physics of traffic
they capture. For instance, based on large amounts of high-resolution field traf-
fic data, work in [8] used the conditional distribution of the green start times
and traffic demand scenarios for improved performance. However, high amounts
of high-resolution traffic data are expensive to acquire at scale and doesn’t ex-
ploit the temporal periodicity at the local level of adjacent traffic lights. Using
a relatively simple model to predict arrivals at coordinated signal approaches,
the work of [3] assumes nearest-neighbor interactions between signals and uses
a linear superposition of distributions to optimize traffic lights phase duration.
Despite finding the optimal coordination, the algorithm couldn’t handle unpre-
dictable changes to platoon shapes (i.e. occasionally caused by platoon splitting
and merging) or prediction during saturated conditions (i.e. traffic jams, acci-
dents). Hence its rather limited adaptation capabilities to disruptions that can
propagate in time and space in the system.

The main goal of this study is to introduce Oscillator-Based modelling and
control using Efficient neural Learning for Intelligent road traffic Signal Calcula-
tion (OBELISC), a new methodology and system for jointly modelling, learning,
and controlling the dynamics of traffic flows for effective phase duration calcu-
lation. In a very good review and perspective, the study of [2], introduced the
formalism of oscillator-based traffic modelling and control. Despite the good
mathematical grounding, the proposed approach was static, in that it removed
all convergence and self-organization dynamics of the oscillators, by replacing
it with the steady-state solution. Such an approach has benefits at the single
intersection level, as also the authors claim, but will fail in large-scale heteroge-
neous road networks (i.e. non-uniform road geometry, disrupted traffic patterns,
etc.). The approach of OBELISC introduces a novel type of nonlinear coupled
oscillators model based on [15], along with a nonlinear control mechanism that
allows it to capture complex flow patterns and unpredictable variations [16] in
large road networks. This ensures a robust control of the oscillator-based model
under dynamical demand changes based on measurement of local traffic data. A
similar oscillator approach was used in [13] and later in [5] as area-wide signal
control of an urban traffic network. Yet, due to their complex-valued dynamics
and optimization, the systems could not capture both the spatial and tempo-
ral correlations under a realistic computational cost for real-world deployment.
Additionally, we are contributing with the release of a multi-cross urban traffic
dataset, which contains 59 days of real urban road traffic data from 8 crosses
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in a city in China. Targeting a real-world deployment and superior run-time
performance under real traffic flows, OBELISC is:

– using an efficient implementation in spiking neural networks [4],
– is avoiding optimization routines and operates in real-time,
– it excels in minimizing typical traffic key performance indices when the phase

duration is calculated depending on the real-time demand measurements.

2 Materials and Methods

The dynamics of a traffic signal is periodic, with a phase of green - yellow - red
light in one cycle, and is defined by three control parameters: a cycle length (i.e.
sum of phases), a (phase) offset, and a split. The scope of our study, the phase
duration calculation, is described for adjacent crosses signals in Figure 1. Typi-
cally, for a responsive traffic signal control system, adjusting the phase duration
is equivalent to optimizing a given objective function (e.g. such as minimizing
travel time, waiting time, or stops) in real-time, based upon perceived traffic con-
ditions. In this section, we introduce OBELISC, as a methodology and system
for jointly modelling, learning, and controlling phase calculation that exploits
the periodic (i.e. oscillatory) dynamics of traffic.3

Fig. 1. Traffic light signal calculations: phase duration, offset, and cycles.

2.1 Oscillator-based Modelling of Traffic Dynamics

Traffic has a strong periodic behavior. This motivates us to describe traffic light
phasing phenomenon as a repeated collective synchronization problem, in which
a large network of oscillators, each representing a traffic light controlling a pos-
sible movement direction in a cross, spontaneously locks to a common operation
phase. Subsequently, the phase duration adjustment factor is computed as a

3 Codebase available at: https://github.com/omlstreaming/ecml2021
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function of the oscillator time to synchronization. The intuition is the following:
1) each of the oscillators is injected with external traffic flow data impacting its
local dynamics, and 2) the oscillator network converges to a steady state used to
extract adaptive factor to adjust the traffic light phases. Despite the inevitable
differences in the natural oscillation frequencies and injected data of each oscil-
lator the network ensures that each of the coupled oscillators repeatedly locks
phase. We extend the basic Kuramoto oscillator [10] with additional components
to account for spatial as well as temporal interactions among the oscillators and
an external perturbation model as described in Equation 1.

dθi(t)

dt
= ωi(t) + ki(t)

N∑
j=1

Aijsin(θj(t)− θi(t)) + Fisin(θ∗(t)− θi(t)) (1)

where:
θi - the amount of green time of traffic light i
ωi - the frequency of traffic light i oscillator
ki - the flow of cars passing through the direction controlled by oscillator i
Aij - the static spatial adjacency coupling between oscillator i and oscillator j
Fi - the coupling of external perturbations (e.g. maximum cycle time per phase)
θ∗ - the external perturbation (e.g. traffic signal limits imposed by law)
The model underlying OBELISC assumes that the change in allocated green
time θi for a certain traffic light i, for a certain direction, depends on the: 1) the
internal frequency of the corresponding (traffic light) oscillator ω; 2) the current
flow of cars ki in that direction; 3) the spatial coupling Aij of the oscillators
through the street network that weights the impact of a nonlinear periodic cou-
pling of the oscillators sin(θj(t) − θi(t)); and 4) the external perturbation θ∗

with weight Fi which ensures, for instance, that the output of the system stays
in the bounds of realistic green time values imposed from the traffic laws. Given
the known topological layout of the road network and the computed green times
of each of the oscillators, when the dynamics converge (i.e. the solution of the
differential equation 1), we infer the actual adaptive factor to be applied to the
traffic light phase duration between adjacent (coupled) oscillators corresponding
to adjacent moving directions. More precisely, given the steady state value of the
green time (i.e. the solution θi(tf )), we calculate the phase duration as the time
to synchronization of each oscillator relative to the ones coupled to it. From the
dynamics synchronization matrix ρ at each time t the phase duration update is
calculated as arg max

t
{ρ(t) > τ} where ρij(t) = cos(θi(t)− θj(t)) and 0 < τ < 1.

In order to ground the analytic formulation, we describe a simple, regular 5× 5
lattice composed of N = 25 oscillators. For simplicity, in this example, each
oscillator is responsible for an entire cross (i.e. the 4 adjacent directions: N, S,
W, E) and the spatial coupling Aij is given by the topology of the lattice, as
shown in Figure 2 a. Here, each oscillator i dynamics is described by the su-
perposition of its natural oscillation frequency ωi and the cumulative impact
of neighboring (coupled through Aij) oscillators weighted by the flow of cars
ki through the cross controlled by oscillator i. The external perturbation term
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Fig. 2. Oscillator-based dynamics.

Fisin(θ∗(t)− θi(t)) is neglected for simplicity. Figure 2 b describes the internal
dynamics of such a network model for traffic control where given the different ini-
tial conditions of each oscillator, the coupling dynamics enforces consensus after
some time (i.e. 2.1s). The steady state is then used to extract the actual phase
duration by simply calculating the time to synchronization arg max

x
{ρ(t) > τ},

as a per oscillator relative time difference, from the ρ matrix in Figure 2 c. Here,
the choice of τ determines how fast a suitable steady state is reached.

2.2 Robust Control of the Oscillator-based Networked Dynamics

The network dynamics of OBELISC (Equation 1), is judiciously parametrized to
cope with the normal daily traffic profile. This can be visible in Figure 3 where
the model is able to keep the lost time through a single cross to an acceptable
value, around 70s (see Figure 3 b). In the case of traffic disruptions (e.g. accident,
sport events, or adverse weather conditions), the system cannot capture the fast
changing dynamics (i.e. steep derivatives) of the traffic flow (see Figure 3 a)
and, hence, performs poorly, for instance in preserving an acceptable time loss
(i.e. difference in the duration of a trip in the traffic free vs. full traffic) over
rush-hour (see Figure 3b around 18:00). The example in Figure 3 illustrates a
limitation of such dynamic networked models, namely robustness to uncertainty.
Be it structured uncertainty (e.g. sub-optimal choice of the internal oscillator
frequency ω or a sudden time varying topological coupling Aij through trajectory
re-routing) or unstructured uncertainty (e.g. unmodelled dynamics through the
single use of θ̇(t) and neglecting rate of change given by the Laplace operator
θ̈(t)), the system in Equation 1 is unable to converge to a satisfactory solution
given input k and coupling constraints.
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Fig. 3. Oscillator-based model dynamics adaptation capabilities.

To address this challenge, we extend Equation 1 with a robust control law.
We chose to systematically maintain stability of the oscillatory dynamics by us-
ing a robust control approach which ensures consistent performance in the face of
uncertainties. Sliding mode control [16]is a well established control engineering
method to compensate for uncertainty and handle highly nonlinear problems.
At its core it captures and controls the impact of higher-order motion (i.e. sec-
ond derivative) through a high-frequency switching of the control law towards
synchronization. Such a discontinuous robust control ”drives”, through a regu-
larizing control law term u(t), the coupled dynamics of the oscillators towards a
desired dynamics (i.e. sliding surface).

dθi(t)

dt
= ωi(t) + ki(t)

N∑
j=1

Aijsin(θj(t)− θi(t)) +Fisin(θ∗(t)− θi(t)) +ui(t) (2)

with

ui(t) = ε1

∫ t

0

ŝi(τ)dτ

dŝi(t)

dt
= ε2(

∑
i,j

(ŝj(t)− ŝi(t)) + si(t))

dsi(t)

dt
= ε3

∑
j

(sj(t)−
dŝi(t)

dt
)− sign(ŝi(t))

d2θi(t)

dt2

0 < ε1 < ε2 < ε3 < 1

(3)

where:
si(t) - the surplus energy of traffic light i oscillator
ŝi(t) - the estimated surplus energy of traffic light i oscillator
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The goal of the regularizing sliding mode control law ui is to ”push” the
network of coupled oscillators, with a step size of ε, towards a dynamics which
accommodates the disruptions in the flow of cars k (i.e. captured by θ̈i(t)).
Intuitively, this assumes that the controller captures the second-order motion
(i.e. θ̈i(t)) of the oscillator and compensates for it asymptotically until the surface
is reached. This assumes, in first instance, choosing an appropriate sliding surface
that minimizes the energy surplus si(t) as illustrated in Figure4 c. Following
Equation 3, the regularizing control law ui(t) applied to oscillator i is the area
under the curve (i.e. the integral) of the estimated energy surplus, depicted in
Figure 4 c. Interestingly, the (estimated) surplus energy, which keeps oscillator
i away from the desired robust dynamics ŝi(t) depends on the local oscillators
interaction

∑
i,j(ŝj(t) − ŝi(t)) and the actual surplus energy. The change in

surplus energy is the actual dynamics of convergence to the sliding surface and
is based on the cumulative impact of neighboring oscillators

∑
j sj(t) and the

Laplacean of the green time θ̈i(t) weighted by the direction of the convergence
sign(ŝi(t)). The property of insensitivity of sliding surface in Equation 2 to
the oscillatory dynamics 4 is utilized to control the reaction of the network of
coupled oscillators to uncertainty. We realized this practically by adding the
regularizing term ui(t) in the local dynamics of each oscillator described by
Equation 1. To get a better understanding of Equation 2, we now exemplify, in
Figure 4, the impact the sliding mode controller has upon the dynamics of a
road network when facing traffic disruptions from a real scenario (details about
the data is provided in the Experiments and Results section). We consider a
region composed of 8 crosses and N = 29 oscillators as described in Figure 4 a.
In our case, the network of coupled oscillators is a system with discontinuous

Fig. 4. Sliding Mode Control for oscillator-based model dynamics adaptation.

control (i.e. the control law ui(t) uses the sign of the energy surplus to drive

4 For a thorough analysis of sliding modes invariance see [16].
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the system towards the robust dynamics). Basically, as shown in Figure 4 b,
c, given each sample of flow data ki(ti...tj ...tk) (from the road sensors) there
is a fast convergence time-scale which allows the oscillators to reach steady
state. This state is reached under sliding mode control by compensating for the
disruptions in the traffic flow modelled by the second-order motion θ̈i(t). The
stationary state is subsequently probed for the actual phase duration, relative to
each coupled oscillator by solving arg max

x
{ρ(t) > τ} where ρij(t) = cos(θi(t)−

θj(t)) and 0 < τ < 1. Due to the fast changes, occurring during disruptions
(see Figure 4 b - rush hour around 18h00), in the slow time-scale of traffic flow
(i.e. sensory data), the network of coupled oscillators benefits from the sliding
mode control law to compensate for the abrupt changes and to reach consensus,
as shown in Figure 4 c - right panel. This consensus state describes the point
when the system dynamics reached the sliding surface, in other words when
the magnitude of the surplus energy decayed at a finite rate over the finite
time interval (i.e. fast timescale in Figure 4 c - left panel). The regularization
approach we propose has a simple physical interpretation. Uncertainty in the
system behavior in the face of disruptions appears because the motion equations
of the dynamics in Equation 1 are an ideal system model. Non-ideal factors
such as unmodelled dynamics and sub-optimal parameter selection are neglected
in the ideal model. But, incorporating them into the system model eliminates
ambiguity in the system behavior which ”slides” to a robust dynamics.

2.3 Representation, Learning, and Dynamics in Neural Networks

The notion of phase allows for a direct identification of the system’s state in terms
of a one-dimensional variable, described in Equation 1. This facilitates an ana-
lytic approach to robustly control such dynamics, as shown in Equation 3. Yet,
such complex analytical description of networked dynamics is not tractable for
large real-world deployments. In order to deploy an efficient traffic signal phase
optimization with OBELISC, the data representation, the oscillatory network
dynamics, and the robust controller, are implemented in the Neural Engineering
Framework (NEF) [4]. NEF offers a systematic method of ”compiling” high-
level dynamics, such as ordinary differential equations (ODEs), into synaptic
connection weights between populations of spiking neurons with efficient learn-
ing capabilities.

Representation of traffic flow data In NEF, neural populations represent
time-varying signals, such as traffic flow data, through their spiking activity. Such
signals drive neural populations based on each neuron’s tuning curve, which
describes how much a particular neuron will fire as a function of the input
signal (see Figure 5 - Encoding Neural Population, upper panel). The role of the
representation (i.e. complemented by a pair of operations for encoding/decoding)
is to provide a distributed version of the real-valued input signal. Basically,
using this representation, we can estimate the input signal originally encoded by
decoding the pattern of spikes (see Figure 5 - Encoding Neural Population). The
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decoding weights are determined by minimizing the squared difference between
the decoded estimate and the actual input signal and accounts for the weights
learning process5.

Learning arbitrary functions of flow data Encoding and decoding opera-
tions on NEF neural populations representations allow us to encode traffic flow
signals over time, and decode transformations (i.e. mathematical functions) of
those signals. In fact, NEF allows us to decode arbitrary transformations of the
input signal. In our case the right-hand side of Equation 1 contains a non-linear
combination of terms, out of which, for instance, the sinus of the relative phase
difference sin(θj(t) − θi(t)) is decoded as a sinus transformation from a popu-
lation encoding the phase difference θj(t)− θi(t). The same principle applies to
the robust controlled dynamics in Equation 2 and is depicted in Figure 5. This
process determines how we can decode spike trains to compute linear and non-
linear transformations of the various signals encoded in a population of neurons.
Essentially, this provides the means of learning the neural connection weights
to compute the function between populations (e.g. product between the popu-
lation encoding the spatial adjacency coupling Aij and the population encoding
the sinus transformation of the phase difference θj(t)− θi(t)).

Dynamics of traffic oscillator network in neural networks Fundamen-
tally, NEF automatically translates from standard dynamical systems descrip-
tions to descriptions consistent with neural dynamics. Using the distributed neu-
ral representation of the traffic data and learning arbitrary functions of traffic
data, we can now describe the combined dynamics implementation of the network
of oscillators and the sliding mode controller. Figure 5 introduces the high-level
implementation details. The neural implementation in Figure 5 is bound to each
oscillator i in the network. Each oscillator is fed with traffic flow data ki(t) cor-
responding to the direction it controls. The real-valued data is then encoded in
a distributed pattern in the Encoding Neural Population. This encoding process
is visible in the Spiking Activity and Neural Activation panels of Figure5, where
each neuron encodes the input data in a frequency modulated train of spikes
(Spiking Activity). The temporal activation of each of the encoding neurons rel-
ative to each other is illustrated in the Neural Activation panel. As one can see,
in Figure 5 - left and low-left panels, the decoded flow if cars is a noisy version of
the actual input (intuitively, more neurons will provide a better reconstruction
but more computational cost). The encoded traffic flow data is then fed to the
actual combined dynamics (i.e. oscillator network and sliding mode controller)
in the Robust Controller OBELISC Population. This neural population has a
recurrent connection that implements the dynamics of the right-hand side of
Equation 2. More precisely, this population splits the Equation 2 in terms and
realizes each multiplication, nonlinear function, and summation in separate con-
nected populations. Basically, the population encoding the oscillation frequency

5 For a thorough overview of practical Neural Engineering Framework (NEF) see [4].
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Fig. 5. Representation, Learning, and Dynamics of Robust Oscillator Network

ωi will be connected through a sum function to the population encoding the
sum of the external constraints (e.g. Aij and Fi) weighting the phase differences
θj(t) − θi(t), both decoded from separate neural populations implementing the
product and sinus functions. These operations implemented in neurons corre-
spond to Aijsin(θj(t)− θi(t)) + Fisin(θ∗(t) − θi(t)). In order to visualize the
benefit of the sliding mode control in the overall dynamics, we also compute the
time loss, as a simple metric, in the Robust Controller OBELISC Population.
As previously mentioned, the sliding mode controller makes a trade-off between
performance and control activity (i.e. better performance in terms of time loss
under faster switches of the control law). Basically, this is visible in Figure 5 -
low right panel, between 18:00 and 24:00, where the OBELISC oscillator network
dynamics performs smoother but worst in optimizing the time loss, whereas the
Robust OBELISC (i.e. dynamics containing the sliding mode regularization) im-
proves the time loss with the price of high-frequency low-amplitude oscillations.

3 Experiments and Results

The experiments and evaluation use the SUMMER-MUSTARD (Summer sea-
son Multi-cross Urban Signalized Traffic Aggregated Region Dataset) real-world
dataset, which contains 59 days of real urban road traffic data from 8 crosses
in a city in China6. The road network layout underlying is depicted in Fig-
ure 4 a. In order to perform experiments and evaluate the system, we used the
real-world traffic flows in the Simulator for Urban Mobility (SUMO)[11]. This
realistic vehicular simulator generates routes, vehicles, and traffic light signals
that reproduce the real car flows in the dataset.

In our experiments, we comparatively evaluated the adaptive behavior of
OBELISC and relevant state-of-the-art approaches, against the static traffic

6 We release the SUMMER-MUSTARD real-world dataset used in OBELISC experi-
ments at: http://doi.org/10.5281/zenodo.5025264.
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planning (i.e. police parametrized phases), used as baseline. We performed an ex-
tensive battery of experiments starting from the real-world traffic flows recorded
over the 8 crosses in the SUMMER-MUSTARD dataset. In order to evaluate
the adaptation capabilities, we systematically introduced progressive magnitude
disruptions over the initial 59 days of traffic flow data. Disruptions, such as acci-
dents and adverse weather determine a decrease in the velocity which might cre-
ate jams. Additionally, special activities such as sport events or beginning/end of
holidays increase the flow magnitude. Such degenerated traffic conditions might
happen due to non-recurrent events such as accidents, adverse weather or spe-
cial events, such as football matches. Using the real-world flow and SUMO, we
reproduce the traffic flow behavior when disruption occurs starting from normal
traffic flow data by reflecting the disruption effect on vehicles speed and/or net-
work capacity and demand. We sweep the disruption magnitude from normal
traffic up to 5 levels of disruption reflected over all the 8 crosses over the entire
day.

The evaluated systems are the following:

– BASELINE - is a optimized static traffic planning that uses pre-stored timing
plans computed offline using historic data in the real-world.

– MILP - a Mixed-Integer Linear Programming phase plan optimization im-
plementation inspired from [14].

– OSCILLATOR - A basic implementation of a network of Kuramoto oscilla-
tors ([15]) for each direction in the road network cross.

– OBELISC - uses the core Kuramoto oscillator model from [15] and considers
an external reference for cycle time F , flow modulation k, and a spatial
topology weight A. We used two implementations, one using an underlying
ODE solver (OBELISC ODE) and the second one using NEF spiking neural
networks (OBELISC NEF).

– Robust OBELISC - extends the basic OBELISC with the regularizing sliding
mode control law u. The Robust OBELISC, similar to OBELISC, has two
versions, Robust OBELISC ODE and Robust OBELISC NEF, respectively.

Evaluation of the phase calculation accuracy For the evaluation of the
different approaches for phase duration computation (i.e. BASELINE, MILP,
OSCILLATOR, OBELISC, and Robust OBELISC), we followed the next proce-
dure:

– Read relevant data from simulation experiment (without disruptions and
with 5 levels of progressive disruptions) for each of the systems.

– Compute relevant traffic aggregation metrics (i.e. average time loss, average
speed, and average waiting time).

– Rank experiments depending on performance.
– Perform statistical tests (i.e. a combination of omnibus ANOVA and posthoc

pairwise T-test with a significance p = 0.05) and adjust ranking depending
on significance.

– Evaluate best algorithms depending on ranking for subsets of relevant met-
rics (i.e. the metrics with significant difference).
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Our evaluation results are given in Table 1 where each of the approaches is ranked
across the disruption magnitude scale (no disruption to maximum disruption)
over the specific metrics (i.e. average time loss, and average speed, and waiting
time, respectively). For flow magnitude disruptions, the level of disruption (i.e.
1.1 ... 1.5) is a factor used to adjust the number of vehicles or the speed of vehicles
(i.e. for adverse weather) during the disruption. The evaluation was performed
on the entire dataset containing recorded traffic flows over 59 days from 8 crosses.
The exhaustive experiments and evaluation in Table 1 demonstrate where our

System/
Disruption level normal flow 1.1 1.2 1.3 1.4 1.5

Average time loss(s)
BASELINE 102.535 114.600 136.229 241.383 197.399 202.113

MILP 151.281 153.781 203.301 309.671 223.017 257.464
OSCILLATOR 131.468 161.871 203.301 309.671 199.797 497.124

OBELISC (ODE) 131.825 270.167 131.077 151.281 309.671 134.257
OBELISC (NEF) 135.355 155.782 153.524 200.265 199.357 216.919

Robust OBELISC (ODE) 133.524 143.904 147.524 153.524 200.265 220.008
Robust OBELISC (NEF) 85.726 88.326 89.726 84.165 89.889 84.291

Average speed*
BASELINE 5.81 5.67 5.46 5.02 4.94 4.75

MILP 5.97 5.87 5.46 5.03 4.92 4.61
OSCILLATOR 5.94 5.81 5.46 5.02 5.29 4.54

OBELISC (ODE) 5.97 4.75 5.14 5.22 5.04 5.11
OBELISC (NEF) 5.89 5.91 5.90 5.29 5.31 5.10

Robust OBELISC (ODE) 5.98 5.91 5.80 5.97 5.30 5.04
Robust OBELISC (NEF) 5.98 5.97 5.94 5.18 5.07 5.15

Waiting time(s)
BASELINE 164.5 185.3 222.8 294.5 325.9 351.3

MILP 148.7 148.7 212.8 234.5 293.2 372.9
OSCILLATOR 115.7 142.2 215.8 286.5 208.5 418.3

OBELISC (ODE) 160.3 351.3 158.7 148.7 294.5 161.2
OBELISC (NEF) 137.1 137.6 139.4 216.0 204.2 236.3

Robust OBELISC (ODE) 139.4 141.4 149.4 169.8 216.8 252.5
Robust OBELISC (NEF) 128.7 145.7 148.8 159.2 162.4 158.7

∗ Average speed calculated as the ratio between distance traveled and time of travel.

Table 1. Performance evaluation for the different phase duration calculation methods.

approach excels and where it fails to provide the best phase duration calculation.
The chosen evaluation metrics reflect the overall performance (i.e. over multiple
days) with respect to the most significant traffic metrics given the phase duration
value computed by each of the systems.
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The previous analysis is supported by the normalized ranking over the entire
SUMMER-MUSTARD dataset in Figure 6, where we provide a condensed visual
representation of each system’s performance. Here, we can see that if we con-
sider the average time loss the BASELINE performs worst due to its pre-defined
timings and inability to adapt to unexpected disruptions during the daily traf-
fic profile. At the other end of the ranking, both implementations of Robust
OBELISC provide minimal waiting time capturing the fast and steep changes in
the disrupted flows. Due to their similar core modelling and dynamics, OBELISC
systems and OSCILLATOR tend to provide similar performance, with a rela-
tive improvement on the OBELISC side in terms of duration, waiting time, and
speed metrics. This is due to its spatio-temporal extension beyond the basic os-
cillator model that can capture also the spatial contributions of adjacent flows
beyond their temporal regularities when computing the phase duration. Look-
ing at the various implementations of OBELISC, from the computational point
of view, the NEF spiking neural networks excel in performance over the ODE
versions due to their inherent learning and adaptation capabilities coupled with
the distributed representations when solving the dynamics. Finally, the Robust
OBELISC system provides overall superior performance through its discontin-
uous sliding mode control law that captures the deviation of the dynamics in
the presence of disruptions and compensates robustly for their impact on the
oscillator convergence (see Figure 5).

Fig. 6. Phase Duration Calculation System Ranking on All Metrics and Entire Dataset
(8 crosses over 59 days).

Evaluation of the run-time In terms of run-time, the adaptive methods pro-
vide different levels of performance, mainly due to the modelling and optimiza-
tion types they use. The BASELINE is excluded as it is just the static optimized
plans allocation for the real traffic setting in SUMMER-MUSTARD, basically, a
simple value recall from a look-up-table. We measured the time needed by each
of the evaluated adaptive systems to provide a phase duration estimate after
a sensory sample (i.e. one sensory reading of traffic flow data). As mentioned,
each system uses a different computational approach: the MILP uses a solver
that implements an LP-based branch-and-bound algorithm, the OSCILLATOR
uses a Runge-Kutta 45 ODE solver, whereas OBELISC can be implemented us-
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ing Runge-Kutta 45 ODE solver or connected populations of NEF spiking neural
networks. The evaluation is given in Table 2 where the average value over the
entire range of traffic conditions (normal and disruptions) is considered. The ex-
perimental setup for our experiments used 3 machines, each with 24 CPU cores
and 132 GB RAM, and Apache Flink for stream processing and cluster manage-
ment. As expected, at the level of a single intersection optimization, ODE solver

Model Single cross Region (8 crosses)

MILP 0.0510 0.3930

OSCILLATOR 0.0568 0.4544

Robust OBELISC ODE 0.0489 0.4534

Robust OBELISC NEF 0.0071 0.0426

Table 2. Adaptive phase duration calculation run-time evaluation.

approaches (i.e. MILP, OSCILLATOR, and OBELISC (ODE)) lie in the same
range, providing a new phase duration value after 50 ms. At the region level,
considering all 8 crosses, the run-time increases with an order of magnitude,
with MILP overtaking the OSCILLATOR and OBELISC (ODE) due to MILP’s
constraint optimization efficiency at scale and the similar computations of OS-
CILLATOR and OBELISC (ODE). The fastest approach, both as single cross
and regions level, is the NEF neural implementation of OBELISC. With more
than 80% run-time improvement both at single cross-level and regional-level,
OBELISC (NEF) excels due to its efficient computation and learning substrate.

4 Discussion

Traditionally, phase duration optimization for coordinated traffic signals is based
on average travel times between intersections and average traffic volumes at each
intersection.

Modelling Our study introduces an end-to-end modelling, control, and learn-
ing system for road traffic phase duration optimization applicable to any road
traffic layout, scale, and architecture (i.e. number of lanes per direction etc.).
More precisely, using an oscillator-based model [15] of the traffic flow dynam-
ics in large signalized road networks, the system exploits the periodic nature of
the traffic signal circular phasing similar to [1,5] - termed OSCILLATOR in our
experiments. OBELISC goes beyond OSCILLATOR by considering a weighted
external perturbation (e.g. cycle time reference weight F ), flow modulation k,
and a spatial topology weight A. Such a modelling approach adapts to unpre-
dictable disruptions in traffic flows (e.g. accidents, re-routing, adverse weather
conditions) up to a certain extent, where the dynamics of the disruption doesn’t
perturb the self-organization of the coupled oscillators.
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Robust control In reality, the ”steep derivatives” of traffic flows do not allow
OBELISC and OSCILLATOR to converge to the best phase duration value. In
order to achieve high performance (i.e. minimizing metrics such as time loss or
maximizing average speed), we complemented OBELISC with a sliding mode
controller. Such a robust controller ”pushes” the perturbed dynamics under dis-
ruptions towards a dynamics that ”drive” the coupled oscillators network to-
wards the optimal phase. This way, the Robust OBELISC system is capable to
solve local and global traffic dynamics by exploiting the coupling among dif-
ferent oscillators describing traffic periodicity under disruptions. The proposed
system in [14] - termed MILP in our experiments - used exact mathematical
programming techniques (i.e. mixed-integer linear programming) for optimizing
the control of traffic signals and has shown only limited adaptation capabilities.

Computation and Learning Under real-world constraints of traffic control,
OBELISC and Robust OBELISC cannot be implemented by simply integrating
ODEs. To alleviate the typical convergence, stability, and robustness problems
of ODE integration, we implemented OBELISC in efficient spiking neural net-
works using NEF. Basically, using distributed representations of traffic flow data,
learning arbitrary functions from the data, and ”compiling” the ODEs in neural
populations, we gained efficient and flexible implementations of OBELISC (i.e.
OBELISC NEF and Robust OBELISC NEF). Such a choice provided a clear
advantage over the MILP implementation of [14] which formulated phase opti-
mization into a continuous optimization problem without integer variables by
modeling traffic flow as sinusoidal. The system solved a convex relaxation of
the non-convex problem using a tree decomposition reduction and randomized
rounding to recover a near-global solution. Given the complexity in expressing
the system dynamics MILP performed well in simulations, yet the capability to
adapt to sudden changes in the traffic situation are lacking (see the ranking in
time loss, speed and waiting time in Figure 6).

5 Conclusions

Traffic control is a multi-dimensional problem to be optimized under deep un-
certainty. Modelling traffic dynamics is fundamental for traffic control. Aim-
ing at capturing the periodic nature of traffic, we propose OBELISC, a system
using a network of oscillators capturing the spatial and temporal interactions
among different crosses in a traffic network. In order to adaptively cope with
unexpected traffic flow disruptions OBELISC is extended with a sliding mode
controller that strengthens its adaptation capabilities towards global consensus
under high-magnitude disruptions. The system is implemented as a lightweight
learning system that exploits the coupling interactions among different controlled
oscillators. Our extensive evaluation of the system on real-world data and against
state-of-the-art methods, demonstrates the advantages OBELISC brings. From
capturing the periodic dynamics of traffic phasing, to embedding the spatial
correlation among traffic flow along its temporal dimensions, and up to robustly
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adapting to unexpected traffic disruptions, OBELISC stands out as a flexible so-
lution for phase duration calculation. Finally, benefiting from efficient learning
and computation in spiking neural networks, OBELISC is a strong candidate for
actual real-world deployment.
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