2018 17th IEEE International Conference on Machine Learning and Applications

STARLORD: Sliding window
Temporal Accumulate-Retract Learning for
Online Reasoning on Datastreams

Cristian Axenie
Huawei German Research Center
Munich, Germany
cristian.axenie @huawei.com

Mohamad Al Hajj Hassan

Radu Tudoran
Huawei German Research Center
Munich, Germany
radu.tudoran @huawei.com

Daniele Foroni

Stefano Bortoli
Huawei German Research Center
Munich, Germany
stefano.bortoli @huawei.com

Goetz Brasche

Huawei German Research Center Information Engineering and Computer Science Dept. Huawei German Research Center

Munich, Germany
mohamad.alhajjhassan @huawei.com

University of Trento
Trento, Italy

Munich, Germany
goetz.brasche @huawei.com

daniele.foroni @unitn.it

Abstract—Nowadays, data sources, such as IoT devices, fi-
nancial markets, and online services, continuously generate
large amounts of data. Such data is usually generated at high
frequencies and is typically described by non-stationary distri-
butions. Querying these data sources brings new challenges for
machine learning algorithms, which now need to be considered
from the perspective of an evolving stream and not a static
dataset. Under such scenarios, where data flows continuously,
the challenge is how to transform the vast amount of data into
information and knowledge, and how to adapt to data changes
(i.e. drifts) and accumulate experience over time to support
online decision-making. In this paper, we introduce STARLORD,
a novel incremental computation method and system acting on
data streams and capable of achieving low-latency (millisecond
level) and high-throughput (thousands events/second/core) when
learning from data streams. Moreover, the approach is able to
adapt to data drifts and accumulate experience over time, and
to use such knowledge to improve future learning and prediction
performance, with resource usage guarantees. This is proven by
our preliminary experiments where we built-in the framework
in an open source stream engine (i.e. Apache Flink).

Index Terms—Streaming Data, Online Machine Learning,
Distributed Computation, Incremental Computation.

I. INTRODUCTION

Data streams can be seen as stochastic processes in which
events occur continuously and independently from each other.
Querying, processing and executing machine learning models
on data streams is quite different from querying static data
stored in the conventional database model, as data might be
transient and follow a non-stationary distribution.

Such a context opens new problems in designing machine
learning algorithms, that now need to learn from continuous
data in a single pass and, potentially, discard data at fixed
moments in time [1], [2]. Take for example the case of a
6h moving average calculation of online transactions before
Christmas for people located in Berlin.

978-1-5386-6805-4/18/$31.00 ©2018 IEEE
DOI 10.1109/ICMLA.2018.00181

To handle this self-adjusting computation was developed
[3], [4], where computations adjust incrementally to drifts
in the data [S] and [2]. In recent years, it has been shown
that incremental computation delivers large, even asymptotic
speed-ups over full re-evaluation in simple computations [6],
or more complex aggregations [7], [8], [9].

Such models can be plugged into data-parallel programming
models allowing computation decompositions into associative
sub-computations, such as in Apache Spark [10]. However
such approaches do not consider the case of large windows
(e.g. 1 Mevents representing bank transaction data in the last 3
months for fraud detection) and the resource constrains to store
and pass through the data despite the optimized data structures.
All these approaches paved the way for what recent years
have witnessed an increasing interest: incremental learning on
streams [1], [11], [12], [13], [14]. As a consequence many
incremental solutions for all kinds of machine learning algo-
rithms, such as support vector machines [15], neural networks
[16], or Bayesian models [17] have been developed.

The proposed method and system come as an alternative
to well established approaches such as the Massive On-line
Analysis (MOA). As a new paradigm, it does not try to op-
timize the execution of classical machine learning algorithms
on distributed systems, [18], [19], [20], rather it analyzes the
decoupling between the model structure and parameters, such
that we gain flexibility over the traditional approaches [1].

In this context, the first contribution of our system is
the capability to integrate previously learnt knowledge with
recently received data, in order to ensure low-latency learning.
Second, the proposed computation model targets accumulating
experience over time to support future decision making with
high-throughput and constant resource allocation.

1115

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on June 12,2020 at 12:50:55 UTC from IEEE Xplore. Restrictions apply.

II. A DATA FLOW MODEL FOR INCREMENTAL
COMPUTATION ON DATA STREAMS

The paper introduces a novel method and a system for data
processing and data management for online machine learning,
termed STARLORD (Sliding window Temporal Accumulate-
Retract Learning for Online Reasoning on Datastreams). It
offers a solution for incrementally computing on data streams
simple, complex or combinations of features, from statistical
measures to machine learning model parameters. The driving
design requirements for STARLORD were chosen to allow
for:

o low latency - because in many stream applications the
speed of reactions to drifts in the data is a fundamental
requirement (e.g., IoT or financial applications);

o high throughput - due to the exponential growing rate at
which new data is generated and needs to be processed
(e.g. applications and services in IoT that easily reach
thousands to millions events per second).

o bounded memory allocation - keep memory usage fixed
(i.e. only relevant "hot” data) and disk usage flexible (i.e.
processed ’cold” data) as the amount of events in the data
stream increases and can reach very high values (e.g.,
millions-billions of events) as the stream evolves;

o flexibility - allow arbitrary combinations of analytics to
be calculated on the stream, with no time and resource
penalty, by exploiting the underlying hardware, data
processing and data management.

A. Incremental computation on data streams in distributed
systems

In a nutshell, stream processing considers a sequence of
data (the stream) and a series of operations (functions) that
are applied to each element in the stream, in a declarative way
and predefined order (i.e. dataflow model, as defined in [21]).
Traditional machine learning is described by finite training
sets, static models, and stationary distributions. In streaming
context all these conditions must be redefined and the typical
pipeline needs to be redesigned as shown in Figure 1.

- /[] N
_______ o TestSet fereeevevennnn.,

" Feature 9 iy
tracti
i .| Training | Model Model
i Set Training Testing
27| Historical Data
o] DEPlOYed (| Inference/
Model Predictions

4 Stream Source
J

Typical Batch ML pipeline
L

Incremental
Learning

Streaming ML
L
S8
g
= °
o 83 [w.
23
2

Fig. 1. Typical processing pipeline for batch and for streaming.

Such redefinition implies the addition of a new pipeline,
the production pipeline, which is supplementing the creation
pipeline, shown in Figure 1 upper panel, by embedding the
actual learnt model in the data stream and using it for inference
and continuous adaptation, as shown in Figure 1 lower panel.

A new paradigm where there is no need to recompute
features by looping through all the acquired data, rather only
through simple updates based only on the new values [22],
[23], eliminated values and the old feature value [24], [25].
Exploring the existing approaches and systems we can identify
two main problems for online machine learning: 1) computing
time is too large, as it typically implies recomputing features
and learning rules by looping through all acquired/incoming
data, and 2) memory is used greedily to accommodate the
large amount of data. STARLORD tries to tackle these two
problems and is among the first attempts towards this paradigm
shift initially set by MOA and algorithms like ADWIN [26].

Despite the fact that ADWIN implementations have theo-
retical guarantees they do not keep constraints on execution
time and resource allocation the core focus of our system.
We make a trade-off between these two guarantees to be able
to achieve inference with low-latency and high-throughput.
Similar to ADWIN a main advantage of STARLORD is that
it does not require no guess about how fast or how often the
stream will drift, we continuously estimate that while updating
the models.

In the upcoming sections we introduce the proposed frame-
work through sample instantiations for calculating complex
aggregates (i.e. statistical moments, descriptive statistics, and
correlations) and performing supervised learning (i.e. learning
a regression function and making predictions simultaneously).

B. Instantiating the model: incremental computation of statis-
tical measures on data streams

Important information about the data generating process are
available in summary statistics. Such computations can also
capture the characteristics of the data distribution, such as
mean, variance, skewness, and correlation coefficient.

The application of statistical methods to data streams re-
quires modifications to the standard calculation schemes over
samples and populations in order to be carried out in an online
fashion.

Our incremental computation uses dual operations that are
applied on the current window of events over the stream. The
first operation is accumulation, where the contribution of the
latest event added in the window of interest is calculated and
added to the overall estimation of the feature at the next step.
In a similar manner, after the window slides in time, one or
more elements are eliminated from the window. In order to
keep a consistent estimate the dual operation (i.e. retraction) is
performed. This assumes that the contributions of each event to
be removed from the window is calculated and then deducted
out of the global estimate at the next step. This approach
brings clear advantages over traditional approaches, such as
decay techniques [27] and supports window aging principle
(i.e. discount for the staleness of certain data elements). This

1116

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on June 12,2020 at 12:50:55 UTC from IEEE Xplore. Restrictions apply.

is due to the fine control of event processing and determinism
(i.e. offering the same results as batch execution). Furthermore,
adjusted to current privacy requirements of the General Data
Protection Regulation (GDPR) [28] , the accumulate/retract
framework offers the user the control over data management
(i.e. accumulate/retract is transparent and offers user the con-
trol on the impact of the incremental operations, opposite to
decay techniques [29]).

The core steps are introduced in Figure 2, exemplifying an
incremental sum calculation. While the the window slides an
event x,(t) is added to the window and another is removed,
2, (t). The accumulate/retract framework assumes that instead
of recalculating the sum for all events in the window, the
system just calculates and embeds the contribution of xz,(t)
and calculates and discards the contribution of x,.(t).

Retract

Accumylage

event, x (1) q
—~ \ Event

I_’_ _fn(t'ﬂ) =gn

~_——

(t”)-x,(t) / Time
‘~-___/ —

-~

Fig. 2. Incremental computation in the accumulate/retract framework.

In the following, we introduce sample mathematical deriva-
tions under the accumulate/retract framework, which applies
to all instantiations of STARLORD, as a core design principle.

For example, in order to measure the location of the
distribution of the data in the incoming stream, an incremental
estimate of the mean of a window/sample of size n at time ¢,
Z"(t) needs to be calculated. The incremental version of mean
calculation, in Equation 1, is based on the sample formula
(Equation 2) and assumes that the mean Z"™(¢) depends on
the previously calculated mean z"(t — 1) plus a sample size
dependent increment, which quantifies the change in mean
while the stream progresses by processing a new event x(t).

) =3) @) 2 -1))
where,
"t —1) = %Zm)
i=1

Such an equation provides the correct estimate only in
the case events are added to the window of interest (i.e.
accumulation). In our case the sliding window dynamics also
considers the elimination of events from the window (i.e.
retraction). Such an approach facilitates the derivation of any
machine learning algorithm (i.e. basically an iterative process
towards convergence) in a form suitable to simply update the
model on the incoming and eliminated values in the window.

The dual update rules for accumulation and retraction are
shown in the Figure 3.

Retract
event, x () Si

Accumulate

event, x (y q
- —
L~

II lT"(t T===
/)= (¢
4

IIACCUmu|ate =
I/ :r(-::-]‘l); n(t) :: count n ang sum s
S Ry gl
/ Retragt on coy)In(t+1)
[0 = n(gag) 72N sum
II ;n(:ﬂ =80 (144 t
S nitln

Fig. 3. Dual accumulate/retract update rules for incremental mean calculation.

Another statistical measure for stream data is the spread (i.e.
variance). Interestingly, we can look at more subtle properties
of the data, such as the central statistical moments to compute
variance incrementally. The first central moment provides the
mean, T"(t), whereas the spread is captured by the second
central moment, as shown in Equation 3

my(t) = my(t —1) + (x(t) — 2" (1))(2(t) — 2"(1)), 3)
where my, ; = nmy ;.

The derivation suitable for the accumulate/retract framework
is computed taking into account the incremental nature of the
moment estimation over the sliding window and the impact
that the incremental addition and removal of events has upon
the estimate at each step, as shown in Figure 4.

Retract
event, (1)
—

Accumulate

event,) q
7

-
—_—
——
—

Fig. 4. Dual accumulate/retract update rules for incremental statistical central
moment order 2 calculation.

For more advanced statistics one needs to calculate also
higher moments, computing, for example, the shape of the
distribution of the evolving stream (e.g. third central moment,
Equation 5) incrementally.

1117

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on June 12,2020 at 12:50:55 UTC from IEEE Xplore. Restrictions apply.

) = (¢ — 1) — 32T

YU 0t ®

Such features are used in nonlinear combinations with oth-

ers to compute statistics of the generating process underlying

the stream, such as skewness. Such a metric uses hierarchically

the calculation of second moment in Equation 3, and third
moment, derived in Equation 5 :

skew™(t) = v/n~ T;(n)

-2

myt—1) @

_ i‘n_l(t _

m3 (t)

. = (6)
miy (t)/ ms (t)

In order to support such incremental computation the de-
coupling and the orchestration of the execution flow on the
computing infrastructure must be also taken into account. The
core component of STARLORD is a global feature extraction
(GFE) system. GFE separates the high-level feature extraction
and processing from the low level data management, support-
ing different time scales and the composition of features in
a hierarchical manner, as shown in the skewness computation
(Equation 6). The architecture is capable of judiciously dis-
patching computation and data depending on the relevance it
has at each step.

Such an approach decouples the details of data management
and resource allocation allowing the system to compute several
features simultaneously for large windows of events with low
latency. This is supported by an optimized flow orchestration
that ensures a constant response time at high input rates and
large windows (100K to 1M events), as shown in Figure 5.

ecrem,
count from (3, 5y m?g‘szt)he

Memory acdc_umu\ate asa
« \ 9Istinct vajye
Drop
event

Cas

1is ™

the valye t, be elimip,
and s the last e

(there are ng b

ther 1
val
cai lues,

N retract it) Disk / 3rd

ElEolsa

Fig. 5. Orchestrating computation for streaming incremental computation.

The orchestration provides the underlying mechanisms that
for each newly received event in the focus window, checks the
validity of already saved events, and adds the newest in the
accumulation cache and removes oldest from retraction cache.
The newest event is then used in two concurrent processes,
namely the decision to add the event to cache or disk, and the
actual feature(s) update. Next, depending on the decision taken

and the previous step the actual event fetching operation takes
place and a new update is triggered in a similar manner. Such
an orchestration ensures that for each new event (i.e. window
slide) the system provides a new estimate of the feature(s).

C. Instantiating the model: incremental linear least-squares
regression on data streams

In this context, in order to instantiate our approach for
incremental computation, we chose a simple learner design
problem, namely a linear least-squares regressor (LLS).

The long term goal of the work is to provide a flexi-
ble framework for incremental machine learning, for models
which have a closed form and approximations for those which
are hard to formulate in closed form. Due to its closed form
can be computed from a set of incremental statistics. The
implementation assumes that the stream data will feed the
system for both learning the parameters of the model (i.e.
interpolation) and predicting new values (i.e. extrapolation).

The learner tries to minimize the sum squares of the
deviations of a set of n data points

S2:Z[yif(thlaBZvﬂ?)a"'?ﬁN)}Z (7)

which, for the linear case, it simply minimizes the following
criteria

2= "y — (B + Box)]. (8)

The problem can be easily expressed in closed form as
statistical quantities (i.e. mean, variance, covariance) which
can be incrementally extracted from the evolving stream,
as shown in Figure 6. Here the actual derivation is using,
hierarchically, the incremental mean, variance, and covariance,
of z and y to provide an estimate of the regression parameters

B.

®

y

v
var(x) ® Deviations,
y—f(x, B1, B2)

cov(x, y)

/S

— : var(y)
Y ai) 78
. 4

cov(X, y)

The dual problem formulation:
Y =B+ Box = y+ Ba(x -X)

or

X =B+ B2y = x+ B2y -y)

X
x

Fig. 6. Linear least squares (LLS) computation.

For example, incremental covariance can be calculated for
the incoming samples z; and y, based on the statistical central
moment one (Equation 1,2) introduced earlier, as

1118

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on June 12,2020 at 12:50:55 UTC from IEEE Xplore. Restrictions apply.

Covgy (t) = mcova(t -1)

1
(@ () =) () — 5" (#) (10)
Finally the optimization problem assumes that the

parametrized regressor predicts the next value (i.e. describ-
ing a line) in the evolving data stream using the following
incrementally updated parameters:

palt) = 222 o) = ot
Another important aspect in data stream analysis is that the
data generating process does not remain static, i.e., the under-
lying probabilistic model cannot be assumed to be stationary.
Incremental computation is intrinsically capturing such drifts
and adapts to the irregularities of the data generation process,
providing correct updates exploiting the accumulate/retract
framework, as shown in Equations 10,11, avoiding recom-
puting the model by looping through all data in the window
by just calculating the impact the newest and oldest event.
With additional mathematical treatment we were able to derive
other incremental accumulate-retract models for stochastic
predictors (e.g. ARMA family) and Bayesian Inference. There
is a clear limitation in consistently rewriting the algorithms.
Yet the core is to find the correct match between computations
and resource allocation (e.g. cache vs. disk, single vs multi-
core) from the perspective of the distributed engine processing
1t.

— P2(t) Y

STARLORD provides a solution for learning on streaming
data, such that models can be updated on-the-fly with scalable,
low-latency, and high-throughput processing.

III. EXPERIMENTS AND EVALUATION

This section introduces the results and the analysis for
the multiple instantiations of our framework using Apache
Flink as underlying streaming engine [30]. Flink is an open
source system for parallel scalable data processing supporting
expressive, declarative, fast, and efficient data processing on
real-time streaming data. At its core, Flink builds on an
optimized distributed dataflow runtime (Figure 7) that supports
incremental computations on streams, crucial in obtaining low-
latency high-throughput online machine learning. STARLORD
utilizes the algorithm dispatching and execution capabilities of
Flink (Figure 7) but not the standard aggregates for computa-
tion. Later in the section, we compare the performance of our
approach against the standard aggregates and machine learning
capabilities in Flink and Apache Spark.

The experimental setup (Figure 7) for our tests used 3
machines, each with 24 CPU cores and 132 GB RAM, and
Flink for processing and cluster management. During the
experiments we consider a fixed sliding window, but the
cache-disk orchestration mechanism can support also adaptive
windowing. At the same time the caches (i.e. in RAM)
mechanism allows to maintain new and old data in order to
allow the retraction of individual stream events when sliding.

The size of the window in our experiments varied between
100K and 1M events.

Incremental
L eammg

Deployed Inference/
Model Predictions

+" Continuous

Stream
Data
Source

Adaptation
(Algorithm)
Apache Flink dispatching B
- =
=
[

Program

o

ataFlow Graph
Algorithm
flow

Task Managers
umono mu

10.0.0.1 (mm}y T

K 10.003Mmk r2)

optimization
Algorithm
execution

dispatching

Job Manager

Fig. 7. Experimental setup and execution model of the framework.

A. Incremental statistics on streams

In order to test the incremental computation of statistical
measures we used a real-world stream with transactions and
queried a set of compound statistics (i.e. AVG, VAR, SKEW).
We streamed 303 Mevents at 16 KHz (i.e. online transactions
for Black Friday scenario, window size 1Mevents). As we are
interested in analyzing the performance of our system on large
windows of fast data, we evaluate the latency (Figure 8) and
throughput (Figure 9) of the system.

Incremental statistics: (AVG, VAR, SKEW)
Input stream flow: 303Mevents @ 16KHz
Events ing latency distribution on cluster: 3

X 24 CPUs

FExiod

Number of events
° 2 ~
R

°
o

5 10
Execution time range (ms)

Number of events

—

1 1 I +—t I 1 1
o 1 2 3 4 5 6 7 8 9 10
Execution time range (ms)

Fig. 8. Experimental results: latency on incremental statistical measures.

In Figure 8 we have depicted the overall latency distribution.
This is upper bounded to 10 ms and centered on 1 ms, advocat-

1119

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on June 12,2020 at 12:50:55 UTC from IEEE Xplore. Restrictions apply.

ing an average constant processing time per event. The speed-
up is given by our execution pipeline that contains multiple
steps, each corresponding to the stages in the orchestration
(i.e. Figure 5 adding / removing events in the caches given
the sliding focus window, read of disk events for updates).
The proposed system is capable to support such low-latency
processing through its judicious resource allocation and the
incremental processing scheme, as shown in Figure 5. As we
can see in Figure 9, the throughput value is centered on an
average of ~12 Kevents/s, whereas the variations (up to 2
standard deviation) are mainly caused by the non-uniformity
in data ingestion and transport (such as back-pressure), outside
the framework.

Incremental statistics: (AVG, VAR, SKEW)
Input stream flow: 303Mevents @ 16KHz
Events ing throughput distributi

on cluster: 3 X 24 CPUs

10x10%
Average Throughput: 12613 events/s

Time (s)

0 0.5 1 15 2 25
Throughput range (events/s) x10%

Fig. 9. Experimental results: throughput on incremental statistical measures.

In order to evaluate STARLORD against state-of-the-art
implementations we designed similar experiments on two
streaming engines, Apache Flink and Apache Spark respec-
tively. The experiments were performed with Flink version
1.4.2 and Spark version 2.3.1 respectively. While in Flink
we had to implement ourselves the custom code for the
statistical measures, Spark already embeds these functions
in its APIs. Hence, for the Flink implementation, we used
the same incremental approach as used in our framework
(Equations 1 to 6), but without the data orchestration support.
For the Spark implementation, due to its different mode of
operation (i.e. micro-batches - a record may have to wait
for the current micro-batch to be completed), we needed to
write custom functions to merge different already aggregated
results. Moreover, the computation of AVG, VAR, SKEW
was sequential (i.e. one aggregation after the other) and we
needed to implement a parametrization trade-off for latency
and throughput evaluation (i.e. 2s watermark).

In terms of latency, Flink standard aggregations are dis-
tributed between 2 and 55 ms (Figure 10, upper panel),
explained by the fact that the incremental approach can offer a
speed up in calculation. The Spark approach, due to it’s micro-
batching mechanisms, introduces unreasonable delays (Fig-

ure 10, lower panel), despite the processing parametrization we
performed. Recently, Spark has introduced a new “millisecond
low-latency mode” called continuous mode (i.e. reaching 100
ms latency), yet this is closed source from Databricks [31].

Standard aggregations for statistics: (AVG, VAR, SKEW)
Input stream flow: 303Mevents@16KHz
Events processing latency on cluster: 3 machines x 24 CPUs

e L o ad Apache Flink Standard Aggregations
0
0 -
10y MW "
-
-

10°F

10%f

10°)

30 40 50 60 70

Spark Standard Aggregations

Number of events
°
5
N
S

P Soreem o

0 L L L L L L L H
106000 6500 7000 7500 8000 8500 9000 9500 10000 10500

Execution time range (ms)

Fig. 10. Experimental results: Comparative evaluation of Apache Flink and
Apache Spark for latency on statistical measures.

In terms of throughput, we observed that Spark Aggrega-
tions have a skewed distribution, centered on 20 Kevents/s
(Figure 11, left panel), whereas the Flink implementation, on
the other side, obtained a relatively multimodal distribution of
throughput values. This is determined by the custom imple-
mentation of the aggregates in incremental form and ingestion
irregularities (Figure 11, right panel) without the management
offered by the resource orchestration. The sliding window
size for this series of experiments was 100Kevents and was
maintained fixed.

Standard aggregations for statistics: (AVG, VAR, SKEW)
Input stream flow: 303Mevents@16KHz
Events processing latency on cluster: 3 machines x 24 CPUs

Spark Standard Aggregations Apache Flink Standard Aggregations
160!

14000 00
12000 14000
12000

10000
10000

8000
8000

6000
6000

4000
4000
2000 2000
J 0

05 1 15 2

0 5 10 15 0
x10% x10*
Throughput range (ev/s)

Execution time (s)

Fig. 11. Experimental results: Comparative evaluation of Apache Flink and
Apache Spark for throughput on statistical measures.

1120

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on June 12,2020 at 12:50:55 UTC from IEEE Xplore. Restrictions apply.

B. Incremental Linear Least Squares

In order to evaluate the incremental learning capabilities of
the three systems, we implemented an LLS regressor and fed it
with 400 Kevents (i.e. a stationary time series) streamed at 16
KHz for the online training (i.e. estimating the (3 coefficients)
and online prediction on windows of 100Kevents. Figure 12
and Figure 13 depict the latency and throughput analysis for
the learning scenario using our framework. We observed that,
despite the more complex computation, with respect to the
simple statistical measures, the system latency is centered
around 1 ms. The other two implementations, in Flink and
Spark, are in general slower (Figure 14) despite using the same
update formula (Equation 11).

Incremental Linear Least Squares (LLS)
Input stream flow: 400 Kevents @ 16KHz
Events processing latency distribution on cluster: 3 machines x 24 CPUs

2 »10°

——

25
2

1.5

Number of events

1

0.5

2 4 6
Execution time range (ms)

Number of events
g

10'F

S 4
L 4

10° L L L L H L L L H
0 1 2 3 4 5 6 7 8 9 1
Execution time range (ms)

=

Fig. 12.
prediction.

Experimental results: latency on incremental LLS learning and

In terms of throughput, the combination of incremental
formulation and data orchestration (i.e. accumulate / retract)
introduced by STARLORD (Figure 13) provides a higher
overall throughput (~14 Kevents/s) with respect to Flink
and Spark implementations of the same update formula (but
without the orchestration), as shown in Figure 14 right panel.
The sliding window size for this series of experiments was
100Kevents and was maintained fixed.

The experiments were meant to emphasize the advantages
that the combined incremental mathematical formulation and
the optimized data orchestration can leverage incremental pro-
cessing in online machine learning. The evaluation introduced
the general capabilities, but also limitations and differences
among different systems, emphasizing how such a framework
can leverage online machine learning implementations. Our
focus is high-performance computation, yet a current draw-
back of the method is the effort to develop closed forms
of new algorithms in the accumulate - retract framework
while preserving consistency with the batch version. The
experiments code and sample data can be found at [32].

Incremental Linear Least Squares (LLS)

Input stream flow: 400 Kevents @ 16KHz

Events ing latency distribution on cluster: 3 machi
x10*

Xx24CPUs

16

Average Throughput: 14604 events/s

20

&

Throughput (evis)
Execution time (s)
3

@

0
0.5 1 15 2
Throughput range (ev/s) x10*

06

5 10 15 20 25 30
Execution time (s)

Fig. 13. Experimental results: throughput on incremental LLS learning and
prediction.

Implementation of Linear Least Squares (LLS)
Input stream flow: 400 Kevents @ 16KHz
Events throughput and its distribution on cluster: 3 machines x 24 CPUs

5
3510 Flink Latency 45 Flink Throughput
3 40
35
25
30
2 25
15 20

0 20 40 60
Spark Latency

0.5 1 15 2
x10%

7 x10% Spark Throughput

Number of events
Execution time (s)
o

0
0.9 1 11 12 13
Execution time range (ms)y10*

2 3 4
Throughput range (ev/s) x10*

Fig. 14. Experimental results: Comparative evaluation of Apache Flink and
Apache Spark for latency and throughput on LLS learning and prediction.

IV. CONCLUSION

This paper introduces STARLORD, a novel solution for
low-latency (1-ms level), high-throughput (Kevents/s/core)
computation and learning on streams. This framework lever-
ages the capabilities of distributed incremental computation
for online machine learning algorithms targeting real-time
applications. Typically, computing features incrementally, for
large windows, implies keeping large states in memory and re-
computing the functions for every incoming event while trying
to keep up with the timing requirements. This is not usually a
tractable solution in real-time processing applications. STAR-
LORD provides a solution for implementing online machine
learning with very low latency over large event windows by

1121

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on June 12,2020 at 12:50:55 UTC from IEEE Xplore. Restrictions apply.

deriving incremental, accumulate/retract update models for
algorithms and leveraging their execution on a distributed
system. It offers simultaneous computation of multiple features
and learning rules while guaranteeing limited or programmable
resource allocation (i.e. memory and disk) by using optimized
algorithms and execution for reduced latency. Our preliminary
results on simple statistical aggregates, depicted in Figure 8
and Figure 9, and the incremental linear regressor, depicted
in Figure 12 and Figure 13, prove the low-latency high-
throughput capabilities of our proposed solution.

REFERENCES

[1] G. H. Albert Bifet, Ricard Gavald and B. Pfahringer, Machine Learning
for Data Streams with Practical Examples in MOA. MIT Press, 2018.

[2] E. Lughofer, E. Weigl, W. Heidl, C. Eitzinger, and T. Radauer,
“Recognizing input space and target concept drifts in data
streams with scarcely labeled and unlabelled instances,” Inf. Sci.,
vol. 355, no. C, pp. 127-151, Aug. 2016. [Online]. Available:
https://doi.org/10.1016/j.ins.2016.03.034

[3] U. A. Acar, “Self-adjusting computation:(an overview),” in Proceedings
of the 2009 ACM SIGPLAN workshop on Partial evaluation and program
manipulation. ACM, 2009, pp. 1-6.

[4] M. A. Hammer, K. Y. Phang, M. Hicks, and J. S. Foster,
“Adapton: Composable, demand-driven incremental computation,”
in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI
14. New York, NY, USA: ACM, 2014, pp. 156-166. [Online].
Available: http://doi.acm.org/10.1145/2594291.2594324

[5] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with
drift detection,” in Advances in Artificial Intelligence — SBIA 2004,
A. L. C. Bazzan and S. Labidi, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 286-295.

[6] O. Siimer, U. A. Acar, A. T. Ihler, and R. R. Mettu,
“Adaptive exact inference in graphical models,” vol. 12.
JMLR.org, Nov. 2011, pp. 3147-3186. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1953048.2078207

[71 P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin,
“Incoop: Mapreduce for incremental computations,” in Proceedings
of the 2Nd ACM Symposium on Cloud Computing, ser. SOCC ’11.
New York, NY, USA: ACM, 2011, pp. 7:1-7:14. [Online]. Available:
http://doi.acm.org/10.1145/2038916.2038923

[8] P. Bhatotia, P. Fonseca, U. A. Acar, B. B. Brandenburg,
and R. Rodrigues, “ithreads: A threading library for parallel
incremental computation,” ser. ASPLOS ’I5. New York,
NY, USA: ACM, 2015, pp. 645-659. [Online]. Available:
http://doi.acm.org/10.1145/2694344.2694371

[9] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and
L. Zhuang, “Nectar: Automatic management of data and computation
in datacenters,” in Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 75-88. [Online].
Available: http://dl.acm.org/citation.cfm?id=1924943.1924949

[10] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, 2012, pp. 2-2.

[11] J. Yang and J. Widom, “Incremental computation and maintenance of
temporal aggregates,” in Data Engineering, 2001. Proceedings. 17th
International Conference on. 1EEE, 2001, pp. 51-60.

[12] T. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee, “Estimating
statistical aggregates on probabilistic data streams,” ACM Transactions
on Database Systems (TODS), vol. 33, no. 4, p. 26, 2008.

[13] H. He, S. Chen, K. Li, and X. Xu, “Incremental learning from stream
data,” IEEE Transactions on Neural Networks, vol. 22, no. 12, pp. 1901-
1914, Dec 2011.

[14] L. Popa, M. Budiu, Y. Yu, and M. Isard, “Dryadinc: Reusing
work in large-scale computations,” in Proceedings of the 2009
Conference on Hot Topics in Cloud Computing, ser. HotCloud’09.
Berkeley, CA, USA: USENIX Association, 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855533.1855554

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

(27

(28]

[29]

[30]

[31]

[32]

1122

G. Cauwenberghs and T. Poggio, “Incremental and decremental support
vector machine learning,” in Proceedings of the 13th International
Conference on Neural Information Processing Systems, ser. NIPS’00.
Cambridge, MA, USA: MIT Press, 2000, pp. 388-394. [Online].
Available: http://dl.acm.org/citation.cfm?id=3008751.3008808

S. Furao, T. Ogura, and O. Hasegawa, “An enhanced self-organizing
incremental neural network for online unsupervised learning.” Neural
Networks, vol. 20, no. 8, pp. 893-903, 2007.

R. C. Wilson, M. R. Nassar, and J. I. Gold, “Bayesian online learning of
the hazard rate in change-point problems,” Neural Computation, vol. 22,
no. 9, pp. 2452-2476, 2010.

J. Gama, Knowledge Discovery from Data Streams, 1st ed. Chapman
& Hall/CRC, 2010.

M. Sayed-Mouchaweh and E. Lughofer, Learning in Non-Stationary En-
vironments: Methods and Applications. Springer Publishing Company,
Incorporated, 2012.

A. Gepperth and B. Hammer, “Incremental learning algorithms and
applications,” in European Symposium on Artificial Neural Networks
(ESANN), 2016.

T. Akidau and R. e. a. Bradshaw, “The dataflow model: A practical
approach to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing,” Proc. VLDB Endow.,
vol. 8, no. 12, pp. 1792-1803, Aug. 2015. [Online]. Available:
http://dx.doi.org/10.14778/2824032.2824076

D. Logothetis, C. Olston, B. Reed, K. C. Webb, and K. Yocum,
“Stateful bulk processing for incremental analytics,” in Proceedings
of the 1st ACM Symposium on Cloud Computing, ser. SoCC ’10.
New York, NY, USA: ACM, 2010, pp. 51-62. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807138

D. Peng and F. Dabek, “Large-scale incremental processing
using distributed transactions and notifications,” in Proceedings
of the 9th USENIX Conference on Operating Systems Design
and Implementation, ser. OSDI’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 251-264. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924961

C. Demetrescu, D. Eppstein, Z. Galil, and G. F. Italiano,
in Algorithms and Theory of Computation Handbook, M. J.
Atallah and M. Blanton, Eds. Chapman & Hall/CRC, 2010,
ch. Dynamic Graph Algorithms, pp. 9-9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1882757.1882766

Z. Huang and P. Peng, “Dynamic graph stream algorithms in
space,” CoRR, vol. abs/1605.00089, 2016. [Online]. Available:
http://arxiv.org/abs/1605.00089

A. Bifet and R. Gavalda, “Adaptive learning from evolving data streams,”
in Advances in Intelligent Data Analysis VIII, N. M. Adams, C. Ro-
bardet, A. Siebes, and J.-F. Boulicaut, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 249-260.

E. Cohen and M. Strauss, “Maintaining time-decaying stream
aggregates,” in Proceedings of the Twenty-second ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, ser.
PODS ’03. New York, NY, USA: ACM, 2003, pp. 223-233. [Online].
Available: http://doi.acm.org/10.1145/773153.773175

(2018) 2018 reform of eu data protection rules: Regulation 2016/6791,
the european unions new general data protection regulation (gdpr).
[Online]. Available: goo.gl/ZFw93G

S. Dawar, V. Sharma, and V. Goyal, “Mining top-k high-utility
itemsets from a data stream under sliding window model,” Applied
Intelligence, vol. 47, no. 4, pp. 1240-1255, Dec 2017. [Online].
Available: https://doi.org/10.1007/s10489-017-0939-7

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” [EEE Data Eng. Bull., vol. 38, pp. 28-38, 2015. [Online].
Available: https://flink.apache.org/introduction.html

T. D. J Torres, M Armbrust and S. Zhu. (2018) Introducing low-latency
continuous processing mode in structured streaming in apache spark
2.3. [Online]. Available: https://databricks.com/blog/2018/03/20/low-
latency-continuous-processing-mode-in-structured-streaming-in-apache-
spark-2-3-0.html [accessed 03.07.2018]

(2018) Experiments code for paper submitted at icmla2018. [Online].
Available: https://github.com/omlstreaming/icmla2018

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on June 12,2020 at 12:50:55 UTC from IEEE Xplore. Restrictions apply.

